

CHART II
Software Development Guide

Version 1.0
Final

CHART Contract Number BCS99-30A
Work Order Number 4

Prepared For

Office of CHART
CHART Statewide Operations Center

7491 Connelley Drive
Hanover, MD 21076

Prepared By

PB Farradyne
3200 Tower Oaks Boulevard

Rockville, MD 20852

January 30, 2003

CHART II Software Development Guide � Version 1.0

Table of Contents

1. INTRODUCTION... 1
1.1 Research Methodology... 2

2. CHART II SOFTWARE BACKGROUND.. 4
2.1 CHART II Software Systems... 5
2.2 Multi-Site Deployment and CORBA Usage... 11
2.3 COTS Tools .. 13

3. EXISTING CHART II SYSTEM DOCUMENTATION .. 16

4. SOFTWARE DEVELOPMENT LIFECYCLE GUIDELINES ... 22
4.1 Catalyst Methodology ... 22
4.2 Key Design Principles... 23

4.2.1 Exception Processing.. 24
4.2.2 Long Running Operations ... 24
4.2.3 Access Control .. 24
4.2.4 Parameter-Driven System Properties ... 25

4.3 High-Level Design .. 25
4.4 Detailed Design .. 27
4.5 Implementation ... 29
4.6 Testing .. 31
4.7 Installation/System Upgrades ... 32
4.8 Software Development Work Products ... 33

5. SYSTEM ENVIRONMENTS ... 36
5.1 Software Development Environment .. 36
5.2 Integration Test Environment.. 37
5.3 System Test Environment... 37
5.4 Operational Environment .. 39

6. ADDITIONAL CHART II SOFTWARE DEVELOPMENT GUIDANCE 40
6.1 Graphical User Interface... 40
6.2 Services .. 42
6.3 Database .. 42
6.4 Field Management Station.. 43
6.5 Simulators...44
6.6 System and Device Logging ... 45
6.7 Web Interfaces.. 45

7. ADDING NEW FEATURES TO CHART II.. 47
7.1 CHART II Application Framework Classes ... 47
7.2 Adding a New Device.. 50

7.2.1 IDL Definition... 50
7.2.2 CHART II Service Application Module .. 51
7.2.3 New GUI Module... 52

7.3 Adding a New Model of an Existing Device .. 53
7.3.1 IDL Modifications... 54
7.3.2 Server Module Modifications... 54
7.3.3 GUI Module Modifications ... 55

January 30, 2003 Page i

CHART II Software Development Guide � Version 1.0

7.4 Adding a New Traffic Event Type ... 55
7.4.1 IDL Modifications... 55
7.4.2 Server Module Modifications... 56
7.4.3 GUI Module Modifications ... 56

7.5 Adding a New Algorithm ... 56

8. ADDITIONAL CHART II SOFTWARE DEVELOPMENT RESOURCES.............................. 58
8.1 CHART II Developers Web Site.. 58
8.2 CHART II Web Site Reading Room.. 59
8.3 Recommended Third-Party Documentation.. 59

APPENDIXES... 60
Appendix A � List of Acronyms ... 60
Appendix B � System Property Files... 62

CHART2GUI.props ... 63
DMSService.props.. 67
EORSService.props.. 72
HARService.props .. 75
MsgUtilityService.props .. 82
Notserv.props ... 87
TrafficEventService.props... 88
TSSService.props... 91
UMService.props .. 94

January 30, 2003 Page ii

CHART II Software Development Guide � Version 1.0

List of Tables

Table 1 � Tools Used for CHART II Software Development ...13

Table 2 � CHART II Server Directory Structure ..16

Table 3 � Existing CHART II System Documentation...18

Table 4 � CHART II Software Development Work Products...34

Table 5 � CHART II Software Development Environment ..36

Table 6 � Recommended Third-Party Documentation..59

List of Figures

Figure 1 � Original CHART II Release/Build Schedule...5

Figure 2 � CHART II System Overview...6

Figure 3 � CHART II System High-Level Data Flows ...7

Figure 4 � CORBA Trading and Event Services...11

Figure 5 � Catalyst Methodology ..23

Figure 6 � CHART II Software Development and Integration Test Configuration.......................37

Figure 7 � CHART II System Test Environment ...38

Figure 8 � CHART II Operational Environment...39

January 30, 2003 Page iii

CHART II Software Development Guide � Version 1.0

Document Revision History

Date Revision Primary Author Description
10/29/02 1.0 Draft PB Farradyne Initial document creation.
01/30/03 1.0 Final PB Farradyne Per MDSHA, added more technical detail in

Section 6.1 for the Graphical User Interface and
Section 7 for how to add code for new CHART II
features.

January 30, 2003 Page iv

CHART II Software Development Guide � Version 1.0

1. Introduction
CHART (Coordinated Highways Action Response Team) is a joint effort of the Maryland
Department of Transportation and the Maryland State Police, in cooperation with other federal,
state and local agencies. CHART�s mission is to improve �real-time� operations of Maryland�s
highway system through teamwork and technology. The CHART program relies on
communication, coordination, and cooperation among agencies and disciplines, both within
Maryland and with neighboring states, to foster the teamwork necessary to achieve
transportation management goals. This is consistent with Maryland�s State Highway
Administration�s (MDSHA) overall mission, which is to provide Maryland with an effective and
efficient highway system.

The CHART program is Maryland�s entry into the ITS (Intelligent Transportation System) arena,
and started in the mid-1980�s as the �Reach the Beach� initiative, focused on improving travel to
and from Maryland�s eastern shore. It has become so successful that it is now a multi-
jurisdictional and multi-disciplinary program, and its activities have extended not just to the busy
Baltimore-Washington Corridor, but into a statewide program. The program is directed by the
CHART Board, consisting of senior technical and operational personnel from SHA, Maryland
Transportation Authority, (MdTA), Maryland State Police (MSP), Federal Highway
Administration (FHWA), the University of Maryland Center for Advanced Transportation
Technology (UMD-CATT), and various local governments. The board is chaired by the Chief
Engineer of the SHA. This comprehensive, advanced traffic management system is enhanced
by a newly constructed state-of-the-art command and control center called the Statewide
Operations Center (SOC). The SOC is the �hub� of the CHART system, functioning 24-hours-a-
day, seven days a week, with satellite Traffic Operations Centers (TOC�s) spread across the
state to handle peak-period traffic.

This document is a Software Development Guide that discusses the methodologies, processes,
tools, and other guidelines that were used for the development of CHART II software for the
Maryland State Highway Administration. This information is provided for use by anyone wishing
to modify the CHART II software as directed by MDSHA. This document is organized as
follows:

• Section 1 presents an introduction to the CHART program and the research methodology

used in developing this Guide.

• Section 2 discusses the evolution of the CHART II software and provides information on the

CHART II software subsystems, multi-site deployment and CORBA (Common Object
Request Broker Architecture) usage, and tools used in developing the CHART II software.

• Section 3 identifies the CHART II system documentation pertinent to software development

activities.

• Section 4 provides an overview of the CHART II system development methodology and

discusses key design principles and guidelines for the CHART II software development
lifecycle. It also includes information on the usage of various CHART II tools and identifies
the typical CHART II software development work products.

 Section 5 illustrates the CHART II development, testing, and operational environments. •

January 30, 2003 Page 1

CHART II Software Development Guide � Version 1.0

• Section 6 provides additional guidance on key areas of the CHART II system, including the
Graphical User Interface (GUI), system services, database organization, Field Management
Station (FMS) implementation, simulator creation and usage, system and device logging,
and interfaces to the CHART II web site.

• Section 7 provides guidance for adding new features to the CHART II system, such as

adding a new device, adding a new model of an existing device, adding a new traffic event
type, and adding a new algorithm to the system.

• Section 8 provides references to additional CHART II software development resources,

including the CHART II developers web site, the CHART II web site Reading Room, and
suggested third-party ITS and software documentation.

• Appendixes include a list of acronyms and descriptions of System Property Files.

The information in this Guide is current as of Release 1, Build 3 (R1B3) of the CHART II system,
except where noted.

1.1 RESEARCH METHODOLOGY

The research methodology used to create the CHART II Software Development Guide was
based on a four-step approach:

Task 1 � Define CHART II Software Development Areas for Analysis
This task defined the functional and architectural areas of the CHART II software to be analyzed
and documented for the purpose of providing guidance on future CHART II software
development efforts. CHART II software development personnel were consulted to ensure that
all pertinent areas were included. The resulting areas provided a �roadmap� of the key topics to
be addressed in the CHART II Software Development Guide.

Task 2 � Identify Existing CHART II Software Development Documentation
An abundance of documentation has already been produced during the course of CHART II
software development. Through discussions with CHART II software development staff, the
project team identified the existing documentation that is currently available to guide CHART II
development in the areas defined in Task 1. The documents were reviewed and categorized,
and references to the documents were made in the Guide. This task also included the
development of a current listing of the standard requirements, design, and development
tools/products used in developing CHART II system software.

Task 3 � Assess and Supplement Existing CHART II Software Development Documentation
This task concentrated on an assessment of the adequacy of the existing CHART II software
development documentation and determined the need for additional/supplemental
documentation. The project team conducted interviews with new CHART II software
development staff, as this group was utilizing the existing CHART II documentation to develop
new system functionality. The interviews focused on this group�s software development
approach, their experiences with the existing system documentation, any lessons learned, and
suggestions for improvements to the documentation. Discussions with seasoned CHART II
oftware development staff also occurred to gain additional information. s

January 30, 2003 Page 2

CHART II Software Development Guide � Version 1.0

Task 4 � Develop Draft/Final CHART II Software Development Guide
The findings of the research activities were documented in a Draft CHART II Software
Development Guide. Before submission to MDSHA, this document was reviewed by selected
CHART II software development staff members for accuracy and completeness. MDSHA staff
reviewed the draft document and provided comments. Comments were addressed, and a Final
CHART II Software Development Guide was submitted to MDSHA.

January 30, 2003 Page 3

CHART II Software Development Guide � Version 1.0

2. CHART II Software Background
CHART II was designed to meet Maryland SHA�s need for a flexible, expandable, and
integrated traffic management system that can support distributed operations. Using
experience gained from previous traffic management software implementations, SHA provided
an initial set of requirements for CHART II that were validated and enhanced by an extensive
business architecture development effort. The results of this effort are documented in the
CHART II Business Area Architecture (BAA) Report. The goals set forth for the CHART II
system are as follows:

• Enable quick detection and response to traffic problems associated with incidents and

special events.

• Foster communications with other State and local agencies and service providers to support
implementation of effective, regional transportation management strategies.

• Work reliably and quickly diagnose and report system malfunctions.

• Is easy for operators to learn and use and enhances their productivity.

• Is scalable and easy to maintain.

The process used to develop the CHART II software included extensive review and consultation
with the users of the system. Prototyping was also used extensively both to verify usability and
to test technical approaches for complex functions. The system was developed using a
Release-Build-Version model. The BAA identified four Releases. Releases 2 through 4 are
planned to comprise two Builds each. Release 1 included three Builds. Each Build is
designated to include a set of features defined in the BAA. As a Build progresses through the
cycles of testing and review, a Version number is incremented. As of this writing, Release 1
Build 3 Version 10 is operational. Figure 1, below, shows the original CHART II Release/Build
Schedule and distribution of functions across Releases. Note that this schedule has been
altered subsequent to Release 1.

January 30, 2003 Page 4

CHART II Software Development Guide � Version 1.0

Release 1 Release 2 Release 3 Release 4
Build 1: Build 1 Build 1 Build 1
- Basic Navigator & Admin - Map GUI - Rules-based response - Additional external
- DMS (4 types) - Alerts & Escalation - FITM plans agencies
- Banned words - Notification (fax, page) - Interface to signals Build 2
- Basic library & plans - System health monitor Build 2 - Simulation support
- Operations log Build 2 - Interface to AVL - Ad hoc archive queries
Build 2: - Data export web interface - CHART Lite Web Highlights
- DMS -- 3 more types - EORS & SCAN interface Web Highlights - Shop portable inventory
- New FMS Architecture - Integrate AVCM - AVCM Integration Ph2 - Pavement sensor
- Acceptable Word List Web Highlights - EORS wireless data export data archive
- "CHART Chat" - AVCM Integration Ph1 - EORS/CHART II Interface
- Com log & Event Log - CHART II Incident - Hand-held Data Collection
- Event-based control Integration - AVL Pilot Project
Build 3 - Conditions-at-a-Glance
- Highway Advisory Radio - MAA/EORS Interface
- Shazam flashers - SHADE
- Arbitration Queue -US Wireless demo project
Web Highlights
- RTMS Data

Q4
2002

Release 2

Build 1
Release 3

06
Q1

Release 4

2005
Q1 Q2 Q3Q1 Q2 Q3

1999
Q4

2000
Q1 Q2 Q3 Q4

2001
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

20042003
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

BAA & Sys Architecture

Build 2 Build 2

Build 2

Build 1
Build 2

Release 1

Build 1

Bld 3

Build 1

Figure 1 � Original CHART II Release/Build Schedule

2.1 CHART II SOFTWARE SYSTEMS

The CHART II system consists of four major software systems:

1. CHART II Traffic Management System � This is the heart and brain of the CHART II system.

It provides the operations interface and traffic management functions.

2. Field Management Station (FMS) � This system provides device communications and
device data distribution functions for CHART II field devices.

3. Asynchronous Transfer Mode (ATM) Video Control Manager (AVCM) � This system
provides CCTV camera control and video distribution services.

4. Archive � This system archives CHART II event and operations related data and provides
query and reporting functions.

Figure 2, below, shows a high level view of the CHART II system.

January 30, 2003 Page 5

CHART II Software Development Guide � Version 1.0

Video Network

CHART Workstations

CHART II
Servers

CCTV Cameras

KROWDAOR

21

M

-

A

0

3

1

-M

T

P

I

0

X

1

E

Remote FMS

HARs

Shared Resource
Network CHART Network

Detectors

Video Display
Monitors

AVCM
Servers

CHART II
Archive Server

Fixed and Portable DMS
devices

AVL equipped vehicle

Page and Fax

External
Systems

Media
and

Internet

Figure 2 � CHART II System Overview

The major external interfaces to the CHART II system consist of:

1. Archival Data Users � Any user or external system that communicates with the CHART II

Archive system.

2. CCTV Cameras � Field-deployed cameras for traffic monitoring.

3. CHART Web Server � Receives information from the CHART II system for publishing on the
Web.

4. Emergency Operations Reporting System (EORS) � Legacy system providing information
on road closures and road status.

5. Field Devices � Field-deployed traffic detectors, Dynamic Message Signs (DMS�), Highway
Advisory Radios (HAR�s), and SHAZAM�s.

6. Media � Commercial and public broadcasters.

7. Other Agencies � Any other agencies or organizations receiving traffic or highway status
information from the CHART II system but are not CHART II sites themselves. These
include (but are not limited to):

• I-95 Information Exchange Network (IEN)
• TRANSCOM (Transportation Operations Coordinating Committee)

January 30, 2003 Page 6

CHART II Software Development Guide � Version 1.0

8. Notification Recipients � Recipients of FAX, page, or email alerts from the CHART II system.

9. SCAN (Surface Condition Analyzer) � SHA legacy system supplying weather sensor data.

0. Weather Information Suppliers � Sources for weather reports and alerts.

 have not yet been developed (e.g., weather sensor data from the
CAN system to CHART).

1

The high-level data flow diagram for the CHART II system is shown in Figure 3, below. Note
that some of the data flows
S

CHART

FMS

Archive

AVCM

Device controlDevice statusDetector data

Cam
era

 co
ntr

ol

Cam
era

 vi
de

o

Camera Video

Archival data

Detector data

De
te

ct
or

 d
at

a

Tr
af

fic
 S

ys
te

m
 S

ta
tu

s

Media

Other
Agencies

Traffic System Status

Selected
Video

Multimedia

CCTV
Cameras

Camera video

Camera control
Field Devices

Device control

Device status
Detector data

CHART Web
Server

Archival Data
Users

Reports

Reports

R
ep

or
ts

EORS

R
oa

d
C

on
di

tio
ns

SCANWeather Sensor Data
Weather

Information
Suppliers

Weather Reports

Notification
Recipients

FAX, P
age, E

mail

Econolite Traffic Signal Status

Figure 3 � CHART II System High-Level Data Flows

nces to CHART II in this document refer to the CHART II

Note that all remaining refere
Traffic Management System.

The individual software subsystems comprising the CHART II system are briefly described
below. Some of these subsystems are fully implemented, while others are currently only in the

January 30, 2003 Page 7

CHART II Software Development Guide � Version 1.0

design stage. The specific CHART II release/build in which the subsystem was implemented (or

raction with the user will have both a server and client
e component. The client side implements the GUI functionality required to convey or obtain

planned for implementation) is shown where applicable.

Those subsystems requiring direct inte
sid
from the user the required information.

Alert Management (planned for R2B1)
This subsystem provides alert management and processing functions. It provides the methods
to support the creation and delivery of alerts and maintains the status of alerts in the system.
Alerts may be automatically created by applications or manually created by users. Alerts may
be directed to an operations center where acknowledgement by a user is required. Alerts may
also be caught by an application for automatic processing (e.g., a weather sensor alert may
initiate the creation of a weather sensor alert event by the Traffic Event Management subsystem

d ment subsystem). Some example

•
r of

• rts a center that detector data indicates a possible incident

•
(e.g., temperature below freezing). Alerts that require a response within a specified time

he client side of alert management provides the user with the capability to manually generate
espond to alerts they receive.

an the sending of a notification by the Notification Manage
CHART II alerts are listed below.

Device Failure � used to alert centers of device failures
• Transfer of Responsibility � provides an alert to the receiving center of a transfe

responsibility to that center (e.g., transfer of responsibility for an open event)
Incident from Detector � ale

• Mayday from AVL (Automatic Vehicle Location) � generated when an AVL equipped vehicle
sends a Mayday message
Weather Sensor � generated when a weather sensor reports data outside of a set range

period are escalated up the center hierarchy if not acknowledged within the set time period.

T
an alert and to r

Audio (R1B3)
This subsystem provides distributed access to a text-to-speech (TTS) engine that is utilized by
the HAR (Highway Advisory Radio) subsystem for the conversion of text format messages into

udible data that can be downloaded to the HAR device for broadcast. It also provides the
audio data back to requesting clients for message preview purposes.

a
ability to stream

AVL (planned)
This subsystem provides the interface between the AVL COTS (Commercial Off-The-Shelf)
application and the CHART II system. It is responsible for obtaining vehicle position and status

ormation from the AVL COTS application and providing a conduit for any two-way
ehicle and the CHART system.

inf
communications between an AVL equipped v

Communications Log Management (R1B3)
This subsystem provides a general logging mechanism for operators to record communications
and activities in a central repository. The communications log replaces a paper log and is used
to record all communications, including calls from the public, calls from CHART field units, other
centers, etc. All recorded communications are made available to all other operators in near
real-time through the user interface. The communications log also provides a filtered searching
apability thac

c
t allows an operator to select entries for viewing. Users may select entries to

onvert to a traffic event. These entries will become the base entries in the traffic event�s
history log.

January 30, 2003 Page 8

CHART II Software Development Guide � Version 1.0

Data Export Management (planned)
The Data Export Management subsystem provides a mechanism to make CHART data
available to agencies that are not permitted or do not wish to obtain near real-time data via the
CHART CORBA implementation. This subsystem will periodically, or on demand, generate
XML (Extensible Markup Language) formatted data streams with pre-defined content. This data
an be provided to external users through a web server or via FTP (file transfer protocol) from c

files in a data staging area.

Detector Management (R1B2)
This subsystem provides control and data handling functions for traffic detector and speed
measurement devices. Historical data summaries are compiled and archived. Current traffic

etector information is compared with historical traffic detector information, and alerts are
ding specified tolerances.

d
generated for conditions excee

Device Management (R1B2)
This subsystem handles the control of device state functions (online, offline, maintenance

agement of device arbitration queue entries. mode) and the man

Dictionary (R1B2)
This subsystem provides administrator-managed collections of banned and known words.
Banned words are those words that are not allowed to be displayed or broadcast on traveler

formation devices. Known words are used to provide spell checking and substitution

in
suggestions when unknown words are detected.

DMS (Dynamic Message Sign) Control (R1B1)
This subsystem provides DMS control capabilities. It supplies support for multiple device
manufacturer protocols and will expand to include NTCIP (National Transportation
Communication ITS Protocol) support when these devices are acquired. In addition, this
ubsystem provides the business logic required for arbitration of a particular DMS between s

competing traffic events.

HAR (Highway Advisory Radio) Control (R1B3)
This subsystem provides HAR control capabilities. It supplies support for manufacturer
protocols used by the MDSHA HAR devices. In addition, this subsystem provides the business

n of a particular HAR between competing traffic events. logic required for arbitratio

HAR Notification (R1B3)
This subsystem provides management functions for the control of HAR notification devices such
as SHAZAM�s and DMS devices used as SHAZAM�s.

Message Library Management (R1B2)
This subsystem provides message library management capabilities. It supports the creation of

ultiple message librariesm for user defined stored messages, examples of which include DMS
sage in a library can be assigned a category for user

 Management (design)

and HAR messages. Each mes
classification purposes.

otificationN
pabilities for managing the notification of personnel via FAX, page, This subsystem provides ca

or email.

January 30, 2003 Page 9

CHART II Software Development Guide � Version 1.0

Plan Management (R1B2)
This subsystem provides the ability to create macro type collections of device control
commands. Each item in a plan associates a stored message with a traveler information

evice. These plans can be used to quickly construct traffic event response plans for traffic
 or can be planned for ahead of time.

nagement (R1B2)

d
events that are recurring in nature

Resource Ma

his subsystem provides for management of user login sessions and the control of shared

2B1)

T
resources.

Schedule Management (planned for R

his subsystem supports the creation, management, and execution of lists of actions to be
termined times.

T
performed at prede

Signals (planned)
This subsystem provides an interface to the signals system in order to obtain traffic signal status

he CHART II system. information for use by t

Simulation (planned)
The Simulation subsystem is provided by the University of Maryland and integrates with the
CHART II system.

System Monitor (R1B2)
This subsystem provides system health monitoring processes that are run on a periodic basis.

ach service application is monitored to determine if it is currently available. Alerts are
to be unavailable and self-recovery is attempted.

E
generated when services are found

Traffic Event Management (R1B2)
This subsystem provides for the management and recording of information pertaining to traffic
events that are currently being worked on by system operators. It also provides for the control
of traveler information devices via a traffic event�s response plan. The response plan is
composed of system actions, including device control commands. When the plan is executed,
the system actions are performed, and any device control actions result in an entry being placed
on the arbitration queue for the target device. Each traffic event maintains a running history log
of actions performed and user comments. Additionally, each traffic event maintains records of

evices controlled, resources notified and utilized, and a list of related events for offline
analysis purposes.

d
reporting and statistical

User Manager (R1B1)
This subsystem provides the capability to create and manage user profiles and access rights.

Utility (various releases/builds)
The Utility subsystem provides various utility functions for the CHART II system and collects

rocesses that do not have a home elsewhere. p
fu

These include notepad management, the chat
nction, FITM (Freeway Incident Traffic Management) plan management, GIS (Geographic

Information System) map update functions, etc.

January 30, 2003 Page 10

CHART II Software Development Guide � Version 1.0

2.2 MULTI-SITE DEPLOYMENT AND CORBA USAGE

The architecture for the CHART II system distributes complete system functionality to a number
of districts throughout the State of Maryland. Each of these complete systems can provide full
functionality for the devices connected to the system and objects created within that system
(such as traffic events), and provides functionality for other district's systems that are available.
Thus, the absence of one district's server does not affect the ability of another district to operate

eir own system or other systems that are available. Although the server deployment is spread

for object discovery. Through the use of linked
ederated) Trading Services, the GUI discovers objects that are deployed on the same site as

th
across multiple sites, the GUI presents a view to the user of one large system, using CORBA to
pull together objects served fr any deployment sites. Note that as of this writing, only
two server sites have been deployed.

The GUI is able to locate the software objects at all deployment sites through the use of the
CORBA Trading Service. As Figure 4, below, shows, a CORBA Trading Service exists at each
deployment site. Each service that publishes CORBA objects offers the objects through its local
CORBA Trading Service. Using the link feature of the CORBA Trading Service, each Trading
Service is linked to all other Trading Services in the system. Each GUI is configured to utilize its
local (or an assigned) Trading Service

om the m

 changes
method

(f
the Trading Service as well as objects published in all other trading services in the system. This
allows the GUI to provide a unified view of the system, even though the system is actually
distributed over multiple deployment sites.

Trading Service Event Service Trading Service Event Service

Replicated Data

Local Data Local Data

Published ObjectsPublished Objects

District A District B

Server
Apps

Server
Apps

Object and Event
Channel

Discovery

Ev
en

t C
ha

nn
el

Ev
en

t C
ha

nn
el O
bj

ec
ts

O
bj

ec
ts

method
invocations

District A Client

state

invocations
state changes

Figure 4 � CORBA Trading and Event Services

January 30, 2003 Page 11

CHART II Software Development Guide � Version 1.0

In addition to showing the software objects throughout the system on a single GUI, it is also
necessary to reflect the current state of the software objects as they are changed during real-
time operations. The CORBA Event Service is used to allow objects to push changes in their
state to the GUI (or other interested CORBA clients). Each deployment site has an instance of
a CORBA Event Channel Factory, which is an extension of the CORBA Event Service that
allows multiple event channels. Each CHART II service whose objects are subject to real-time
changes will create one or more Event Channels in its local Event Channel Factory. Each event
hannel is earmarked for a specific class of events (such as DMS events). Each service that

he user with a unified view of the system, both in the objects presented and the ability
 show near real-time updates of these objects. Since the nature of the system is dynamic,

 object's data or perform operations (via method
vocations) on the object. For example, there is one and only one software object in the

 that the dictionary, user data,
nd communications log be shared throughout all deployment sites in the system. Using the

ent site�s database. Each deployment site has its own instance of the Dictionary,
serManager, and Communications Log objects that front-end the replicated database. The

c
creates channels in the CORBA Event Channel Factory publishes the event channel in the
CORBA Trading Service and then uses the channel to push events relating to object state,
alarms, etc.

Since the CORBA Event Service does not provide for a linking mechanism (such as that of the
Trading Service), a GUI that wishes to listen for events at a system-wide level discovers all of
the event channels via the CORBA Trading Service and registers itself as a consumer on each
of the event channels. Using this scheme, a GUI uses the Trading Service to discover all
software objects and Event Channels regardless of their deployment site. The GUI may then
provide t
to
processes discover new objects from known districts via event channels. However, the system
relies on a periodic process to discover objects from new districts that have recently joined the
system.

Most CHART II software objects used in this system are typical distributed software objects.
Each of these objects is served from one and only one deployment site. The data inside an
object pertains only to the instance of the object, and operations pertain only to the instance of
the object on which they are performed. Other parts of the system (such as the GUI) must go to
the instance of an object to view the
in
system that represents a specific DMS in the field. If an operation such as setting the message
needs to be done to the Field DMS, the GUI must perform the operations on the one and only
software object that represents the DMS.

The system includes classes whose instances do not act as the typical objects described
above. Instead, each instance of the class provides access to exactly the same data. Multiple
instances of the class serve as replicated software objects. Some examples of this type of
object are the Dictionary, UserManager, and Communications Log. These objects are different
than the rest of the objects in the system because it is required
a
same dictionary data throughout the system provides consistency in messages displayed on
DMS�. Using the same user data throughout the system allows a user to log in at any site, even
in the event of a catastrophe at the user's normal operating site.

While the design could accomplish this use of shared data through using single instances of the
objects, this type of design would include single points of failure. Thus, if the one and only one
Dictionary object was unavailable, messages could not be placed on a DMS anywhere in the
system since the message contents could not be checked for banned words. To overcome
these single points of failure, the replication feature of the DBMS is used to replicate data to

ach deployme
U

January 30, 2003 Page 12

CHART II Software Development Guide � Version 1.0

system takes advantage of these redundant objects by first attempting to retrieve the object
from the client�s home site. Failing that, it will fail-over to an alternate site�s instance of the

re that has been used in
eveloping the CHART II software.

COTS software dev a, and Oracle) are
stored HART2-SV A area on th II server. Other software
utilities are located on the CHART2-SVR4 and CHART2-SVR5 areas.

Tab Tools Used fo Devel

target o

elopment libraries (i.e., ORB (Object Request Broker), Jav

bject.

2.3 COTS TOOLS

Table 1, below, shows the COTS (Commercial Off-The-Shelf) softwa
d

 on the C R3\CORB e CHART shared

le 1 � r CHART II Software opment

Usage
Adobe Acrobat ents to 4.0 Adobe Systems Inc. Publishing Docum

CHART Web Site
Ant* 1.4.1 The Jakarta Project

Enforces Software Build
Dependences (expected to
be used post-R1B3)

ArcServeIT 6.5 Computer Associates
(CA)

Backup Software

Configuration Management
Tool for Document and
Software Version Control

ClearQuest 2.0 (2001.03.00) oftware

Deviation/Waiver Request

Database, COTS Upgrade
Database

Rational S Problem Reporting, Risk
Management Database,

Database, Action Item

Dialogic System
Software

5.0 Dialogic Telephony board software

Object Oriente
(acquire

Quality Systems &
Softwa

Software (QSS))
InstallShield* 5.0 (Multi-platform

essional 4.0
cted to be

used post-R1B3)

InstallShield Software Installation
Prof
expe

Corp.
Software
Management

Java Communications
API

2.0 Sun Microsystems, Inc. Java RS232 serial port

1.1
JBuilder p. 3.0 Inprise Cor Java Coding. PRIMARY

DEVELOPMENT TOOL.

Kit) expe
Java Runtime Envi

Product Version
(as of R1B3) Vendor

ClearCase Multisite 4.1+ (2000.02.10) Rational Software

DOORS PC (Dynamic
d

Requirements System)

5.2 Telelogic d

re (QSS))

Requirements Management

DOORSNet 4.1.4 Telelogic (acquired
Quality Systems &

DOORS Interface to Web

support
JavaHelp Sun Microsystems, Inc. Help Authoring

JDK (Java Developer�s 1.3.1 (1.4.0
cted to be

used post-R1B3)

Sun Microsystems, Inc. ronment

January 30, 2003 Page 13

CHART II Software Development Guide � Version 1.0

Product Version
(as of R1B3)

JProbe 3.0 KL Group Developer Tool for Detect
Memory Leaks and Other
Code Refinement
Unit Level Testing Tool
Source Code Evaluation
Tool. Run by JHU/A
output sent to Deve
Team (on request basis) �
done at end of R1B3, o
used once or twice.

MS Access 97 Microsoft Corp. Database Reports
MS Excel 97 Microsoft Corp. Change Suggestion Fo

Metrics Spreadsheet,
Database Re

rm,

ports
MS Project 0 200 Microsoft Corp. Software Project Scheduling
MS Visual C++ 6.1 Microsoft Corp. d for

application modeling and
prototyping)

C++ Coding (use

MS Word 97 Microsoft Corp. Documentation, User Manual

to be used
Service

Enforces Build Dep
(used through R1B3)

Oracle Designer .0 Oracle Corp. Database Design (Entity-
Relationship Diagrams, Table

6.0.3.6

Definition Report)

Manager
2.2.0.0.0 with
patch
EM_22_1747199

Database

8.1.5.1.1 for
Window

ORBacus*# JOB-4.0.5 (JOB-
cted to

be used post-
3)

4.1.0 expe

R1B

IONA CORBA Development Tool

RealSpeak 1.10.00 ie sion Lernout and Hausp Text-to-Speech Conver
SQLPlus 8.1.5.0.0 Open Source (ships with

Oracle)
nagement

System
Database Ma

Tau UML Suite
(formerly

iness Team
and Cool:Jex)

oftware)
nd

 Process Re-
Cool:Bus

4.6 Telelogic (acquired
Sterling S

Object Oriented Design a
Business
Engineering

Oracle)
Database Manag
System

Textpad 4.0 Helios Software Solutions Basic Integrated
Development Environment
for Java Coding
Tool used to re

Vendor Usage
ing

JTest 4.0 Parasoft
Krakatau Professional 2.2 Power Software

PL and
lopment

nly

Notification Service* 1.0 (2.0 expected
 post-

R1B3)

IONA CORBA

OMake V4.1+ Rational Software endencies

Oracle Enterprise Oracle Corp. Maintenance

Oracle RDBMS
s NT

Oracle Corp. Database Management
System

TCL 7.6 Open Source (ships with ement

UNICenter TNG
emote Control

5.2 Computer Associates motely control
a workstation or server R

Windows NT 4.0 Service Pack 5 Microsoft Corp. Standard operating system
for CHART II Servers and
Workstations

January 30, 2003 Page 14

CHART II Software Development Guide � Version 1.0

* These tools are in the process of being upgraded. See the Version column for the expected
post-R1B3 version.

Due to the high license cost of the ORBacus CORBA development tool ($65,000+), the PB
Farradyne software development team has been investigating the use of an open source ORB,

ut MDSHA has not yet decided to move towards a new ORB product for CHART II. It is
strongly encouraged for CHART II software development teams to consult with MDSHA,
who may have ORB licenses available for use.

b

January 30, 2003 Page 15

CHART II Software Development Guide � Version 1.0

3. Existing CHART II System Documentation
An abundance of documentation has been produced during the course of CHART II software
development, representing both past efforts and those activities currently in progress. A shared
directory structure was established on one of the CHART II servers (CHART2-SVR1\MODELS)
to organize this material for CHART II project staff, as shown in Table 2, below. The first-level
directories established are shown for all categories of documentation, and second-level
directories are shown only where the materials therein are widely useful to the project team.

Table 2 � CHART II Server Directory Structure

1st Level Significant 2nd Level Content
Distribution Lists Email addresses for notifications of document

review and approval, POC (point-of-contact
list)

Administrative

Program Forms Disbursement requests, travel authorization
requests, etc.

Business Team Business Team materials by release Tool Reports & Data
Object Team Analysis information by release/build

Methodology Catalyst CSC (Computer Sciences Corporation)
Sources Toolkit, reference materials

Delivery CD Images and Delivery Packages for each
delivered system

CI List Current CHART II Configured Item (CI) list
CHART Network As-built and survey information
Hardware Inventory In-scope sites and equipment

Sites & Configurations

Operational Installations CHART II and remote FMS installations
Inspection & Peer Review
Records

Records of inspections and peer reviews of
code, IDL (Interface Definition Language),
design, etc. for each build/release

Project Action Items Records of open and closed action items
QA Assessments & Audits Materials related to CMM (Capability Maturity

Model) assessments, FCA�s (Functional
Configuration Audits) and PCA�s (Physical
Configuration Audits), life-cycle audits, and
schedule reviews

Schedule Master schedule (archive, baseline, in work,
and previous baseline versions)

Project Management
Materials

Monthly Management Status
Reviews

Materials related to monthly task
management reviews

Minutes & Agreements Records of all meetings and significant
agreements

MITS Minutes and presentations related to the MD
ITS Working Group

Technical Presentations Presentations on CHART II design,
requirements, etc.

CHART II Client Monthlies Materials related to CHART II monthly
meetings with customer

Meetings &
Presentations

CHART II Client Weeklies Materials related to CHART II weekly
meetings with customer

Testing Testing summaries, etc.
Training Training plans and materials

January 30, 2003 Page 16

CHART II Software Development Guide � Version 1.0

1st Level Significant 2nd Level Content
Database Design and load documentation as well as

migration and installation information, etc.
Current Approved Current approved versions of project

documentation
Draft In-work versions of project documentation

Project Documentation

Old Approved Old approved versions of project
documentation

Current Approved Current approved versions of project S&P�s
(standards and procedures)

Draft In work versions of project S&P�s

Project Standards &
Procedures

Old Approved Old approved versions of project S&P�s
RFP Original request for proposal (RFP) Reference
Oracle Oracle reference downloads

Transfer Files to be made available to other project
members

Vision and Strategy All materials related to Visioning

Table 3, below, lists the pertinent documentation on the CHART II server along with the
group(s) responsible for creating/maintaining each document and the network location and date
of the file. Note that the N: drive shown for the document location is mapped to the
CHART2-SVR1\MODELS area on the CHART II server.

January 30, 2003 Page 17

CHART II Software Development Guide � Version 1.0

Table 3 � Existing CHART II System Documentation

Document/Deliverable Responsibility Location Date

Requirements
CHART II System Architecture System Architect,

Development
Team

• N:\Project Documentation\Current Approved\Design\System
Architecture\CHART System Architecture.doc

• www.chart.state.md.us/readingroom/readingroom.asp

• 9/5/00

Business Area Architecture Report Business Architect • N:\Project Documentation\Current Approved\Requirements\BAA
Report\chart2-final-baa_Aug31.doc

• 8/22/00

System Requirements System Architect • See DOORS PC requirements tool on CHART2-SVR4 server.
• N:\Project Documentation\Current Approved\Requirements\System

Requirements\CHART II System Requirements.doc

• N/A
• 5/5/00

Design
High-Level Design (each design
document includes only the changes
from the previous release so the
entire chain of documents is listed
here)

Development
Team

• See Tau UML Suite on CHART2-SVR5 server.
• N:\Project Documentation\Old Approved\Design\High Level

Design\R1B1\Server High Level Design\R1B1HighLevelDesign.doc
• N:\Project Documentation\Old Approved\Design\High Level

Design\R1B1\GUI High Level Design\R1B1GUIHighLevelDesign.doc
• N:\Project Documentation\Old Approved\Design\High Level

Design\R1B2\R1B2 High Level Design\R1B2HighLevelDesign.doc
• N:\Project Documentation\Old Approved\Design\High Level

Design\R1B2a\R1B2A High Level Design\R1B2A HighLevelDesign.doc
• N:\Project Documentation\Current Approved\Design\High Level

Design\R1B3\R1B3HighLevelDesign.doc

• N/A
• 7/16/99

• 1/21/00

• 4/17/00

• 10/16/00

• 1/16/01

January 30, 2003 Page 18

http://www.chart.state.md.us/readingroom/readingroom.asp

CHART II Software Development Guide � Version 1.0

Document/Deliverable Responsibility Location Date
Detailed Design (each design
document includes only the changes
from the previous release so the
entire chain of documents is listed
here)

Development
Team

• See Tau UML Suite on CHART2-SVR5 server.
• N:\Project Documentation\Old Approved\Design\GUI Detailed

Design\R1B1\R1B1GUIDetailedDesign.doc
• N:\Project Documentation\Old Approved\Design\Server Detailed

Design\R1B1\R1B1DetailedDesign.doc
• N:\Project Documentation\Old Approved\Design\GUI Detailed

Design\R1B2\R1B2GUIDetailedDesign-final.doc
• N:\Project Documentation\Old Approved\Design\Server Detailed

Design\R1B2\R1B2ServersDetailedDesign-final.doc
• N:\Project Documentation\Old Approved\Design\Detailed

Design\R1B2A\R1B2A Detailed Design\R1B2ADetailedDesign.doc
• N:\Project Documentation\Current Approved\Design\GUI Detailed

Design\R1B3\R1B3GUIDetailedDesign.doc
• N:\Project Documentation\Current Approved\Design\Server Detailed

Design\R1B3\R1B3 Servers Detailed Design.doc

• N/A
• 1/21/00

• 1/21/00

• 7/19/00

• 5/26/00

• 10/26/00

• 3/16/01

• 3/16/01

Logical Database Design Database Team • N:\Database\Database Docs\R1B3 DB Design\Logical_diagram_c2arch3.doc • 1/14/02
Physical Database Design Database Team • N:\Database\Database Docs\R1B3 DB

Design\Physical_diagram_c2arch3.doc
• 1/14/02

Software Development
Software Development Plan Development

Team
• N:\Project Documentation\Current Approved\Management Plans\Software

Development Plan Rev2\CHART II SDP Rev3.doc
• 3/21/02

Java Software Coding/Implementation Development
Team

• N:\Project Standards & Procedures\Current Approved\Software
Development\Coding Standards\Java Coding Standard.doc

• 10/6/99

IDL Coding Development
Team

• N:\Project Standards & Procedures\Current Approved\Software
Development\Coding Standards\IDL Coding Standard.doc

• 7/15/99

C++ and Visual C++
Coding/Implementation

Development
Team

• N:\Project Standards & Procedures\Current Approved\Software
Development\Coding Standards\C++ Coding Standards.doc

• 7/2/99

Sample Unit Test Plan Development
Team

• N:\Project Management Materials\Inspection & Peer Review
Records\Chart\Unit Testing\Test Plans\TSSMgmtTestPlan.xls

• 11/29/00

Integration Test Plan (includes
regression testing for previous
versions)

Development
Team, Database
Administrator

• See ClearQuest tool on CHART2-SVR4 server.
• N:\Project Documentation\Current Approved\Integration Testing\R1B3\R1B3

Integration Test Plan.doc

• N/A
• 9/30/02

System and Acceptance Testing

January 30, 2003 Page 19

CHART II Software Development Guide � Version 1.0

Document/Deliverable Responsibility Location Date
System Test Readiness Review System Test

Team
• N:\Testing\SystemTesting\Readiness Reviews\R1B3\R1B3.03 systest RR

Report.doc
• 11/15/01

System Test Plan System Test
Team

• N:\Project Documentation\Draft\System and Acceptance Testing\R1B3\Test
Plan\R1B3 Test Plan Archive\CHART II R1B3 Test Plan.doc

• 5/15/01

System Test Procedure System Test
Team

• N:\Project Documentation\Current Approved\System and Acceptance
Testing\Test Procedures\R1B3 Test Procedures.doc

• 12/7/01

System Test Report System Test
Team

• N:\Project Documentation\Current Approved\System and Acceptance
Testing\Test Reports\R1B3 Test Report\R1B3 System Test Report.doc

• 1/18/02

Acceptance Test Readiness Review System Test
Team

• N:\Testing\AcceptanceTesting\Readiness Reviews\R1B3\R1B3.10 ORR
Report 030602.doc

• 3/6/02

Acceptance Test Plan System Test
Team

• N:\Project Documentation\Current Approved\System and Acceptance
Testing\Test Plans\CHART II R1B3 Test Plan.doc

• 11/6/01

Acceptance Test Procedure System Test
Team

• N:\Project Documentation\Current Approved\System and Acceptance
Testing\Test Procedures\R1B3 Test Procedures.doc

• 12/7/01

Acceptance Test Report System Test
Team

• N:\Project Documentation\Current Approved\System and Acceptance
Testing\Test Reports\R1B3 Test Report\R1B3 System Test Report.doc

• 1/18/02

Defect Tracking CM • See ClearQuest tool on CHART2-SVR4 server. • N/A
Software Control Notice (SCN) CM • N:\Delivery\R1B3_10 Delivery Package • 2/25/02

Transition to Operations and Deployment
Transition Readiness Review Transition Team • N:\Meetings & Presentations\Technical Presentations\R1B3 Transition

Readiness Review\20020111\TRR.ppt
• 1/11/02

Operations Readiness Review Transition Team • N:\Meetings & Presentations\Technical Presentations\R1B3 ORR\ORR.ppt • 2/5/02
Transition Plan Transition Team • N:\Project Documentation\Current Approved\Transition Plans\Transition

Plan\R1B3 Transition Plan\ R1B3 Transition Plan.doc
• 12/6/01

Data Migration Plan Database
Administrator

• N:\Project Documentation\Current Approved\Transition Plans\Data Migration
Plan\R1B3 Data Migration Plan\R1B3 Data Migration Plan.doc

• 8/31/01

DBA Guide Database
Administrator,
Documentation
Team

• See Operations and Maintenance Guide (Section 3.9 and Appendix A.2).
• Also see N:\Testing\Acceptance Testing\SCN�s\Transition

R1B3.09\Attachment L � Database Instructions.doc

• 1/11/02

User Manual
Operations and Maintenance Guide System

Engineering
• N:\Project Documentation\Current Approved\Operations\Operations and

Maintenance Guide\R1B3 Operations and Maintenance Guide R1.doc
• 2/12/02

January 30, 2003 Page 20

CHART II Software Development Guide � Version 1.0

Document/Deliverable Responsibility Location Date
Delivery CD Task Manager,

CM
• N:\Delivery\R1B3_10 CD Image • 2/25/02

Training Plan System Test
Team

• N:\Project Documentation\Current Approved\Training Plans and
Materials\Training Plan\R1B3 Training Plan.doc

• 5/17/01

Training - Administrator System Test
Team

• N:\Project Documentation\Current Approved\Training Plans and
Materials\Training Materials\R1B3 Admin Course\Admin.ppt

• 10/26/01

Training - Operator System Test
Team

• N:\Project Documentation\Current Approved\Training Plans and
Materials\Training Materials\R1B3 Operator Course\operator R1B3.ppt

• 10/25/01

Configuration Management
System Problem Reporting and
Tracking

CM • See ClearQuest tool on CHART2-SVR4 server. • N/A

Project Planning
Risk Management Procedure Task Manager • N:\Meetings and Presentations\CHART II Client Monthlies\CHART II Monthly

Meeting Presentations\2000\10 October\riskdb-cq-oct30.00.htm
• 10/30/00

January 30, 2003 Page 21

CHART II Software Development Guide � Version 1.0

4. Software Development Lifecycle Guidelines

4.1 CATALYST METHODOLOGY

Catalyst is Computer Sciences Corporation�s (CSC) proprietary structured methodology. It was
used to implement the technical and management approach for the CHART II project. A total
methodology for business change and for complex system development, Catalyst facilitates and
guides application system development, integration, deployment, and operational services. It
provides the formal structure for CHART II software development.

CSC developed the Catalyst methodology and has used Catalyst for over 19 years to support a
wide range of commercial and Government customers. Catalyst supports the criteria of
Carnegie Mellon University�s Software Engineering Institute (SEI) Capability Maturity Model
(CMM) for Software Development.

Phases are Catalyst�s structure for sequencing and describing the work of business change and
system development. They are a convenient mechanism for establishing an overall sequence,
are the basis for planning and estimating, facilitate project- and program-wide synchronization
of activities, and chart decision points for management. There are six phases:

• Five for system development � Vision and Strategy, Architecture, Development, Integration,

and Deployment.
• One for system operations � Operational Services, which covers all aspects of operations

and maintenance support.

Paths are Catalyst�s approach to the development and maintenance of application systems.
Separate paths flow horizontally through the architecture and development phases. Each path
satisfies different customer needs and initial conditions for the effort.

See Figure 5, below, for a graphical depiction of the Catalyst methodology.

January 30, 2003 Page 22

CHART II Software Development Guide � Version 1.0

Vision &
Strategy

Development Integration Deployment Operational
Services

Catalyst

Project Management

Development Coordination

Program Management

Architecture

Service Mgmt

Organizational Change
Technical Infrastructure
Facilities Infrastructure

Process Enablement Paths
RDD
ICD
X/AD
PBD
RBM
ARE

Figure 5 � Catalyst Methodology

For CHART II, the combination of two process enablement paths are employed to meet
operational needs � accelerated application development and iterative custom development:

• Accelerated Application Development. X/AD is the Catalyst path to rapid application

development. It combines workshops, labs, prototyping, full-time user participation, and
timebox management in an approach that rapidly develops a prototype and transforms it into
a production application.

• Iterative Custom Development. ICD designs business processes at a detailed level and

develops new application software on a custom basis. While it is somewhat more
conventional than X/AD, it is by no means old-fashioned. It uses facilitated workshops and
prototyping to develop requirements, to design the user system interface, to validate system
functions, and to produce a working prototype. It provides for application armor plating and
testing to occur either in parallel with prototyping or in a separate sub-phase after
prototyping has been finished.

Further information about Catalyst is available on the CHART2-SVR1 server in the
MODELS\PROJECT DOCUMENTATION\CURRENT APPROVED\ PROJECT MASTER
PLAN.DOC file.

4.2 KEY DESIGN PRINCIPLES

A number of key principles were developed and adopted in designing and developing the
CHART II software:

• Exception Processing

January 30, 2003 Page 23

CHART II Software Development Guide � Version 1.0

• Long Running Operations

Parameter-Driven System Properties

4.2.1 Exception Processing

able
xt status and a more detailed debug text status that is recorded in the application log file.

4.2.2 Long Running Operations

n
om dialing to communicating to successful response and finally, terminating the connection.

4.2.3 Access Control

 in to the operations center that is currently responsible for any targeted
hared resources.

trol of the resource and through an arbitration scheme
at prioritizes requests to the resource.

• Access Control
•

Since CHART II is a distributed object system, it is expected that any call to a remote object
could cause an exception to be thrown. The system provides two levels of exception handling.
The first is aimed at providing the user with immediate feedback on the failure status of the
requested operation. The second is aimed at maintaining a log of system errors to enable
system administrators to trace and correct problems. Each application maintains a running log
file of software system status. Exceptions thrown by the applications contain a user display
te

Many device control operations cannot be executed immediately. In some cases, this might
cause the operator to suspect the operation failed when it has not. Therefore, the software has
been designed to perform these operations in an asynchronous fashion. The initiator of a long
running operation is provided the opportunity to supply a callback status object. This allows the
application to supply progress information back to the initiating client as the operation proceeds.
Each operation provides a final status that indicates overall success or failure. A typical
example is putting a message on a device such as a DMS. The system dials up the device,
obtains a connection between modems, confirms that the DMS controller is responding, sends
the message to the device, and finally disconnects the communications path. At each point in
this process, status information is available to the initiator via the callback status object. This
allows, for example, the display of a progress window in the GUI to inform an operator of the
status of their request to put a message on a DMS. The operator is able to see the progressio
fr

Users gain access to the system through a login process. As a result of this process, they are
provided an access token which contains a description of the functional rights that the user has
previously been granted by a system administrator. The token also contains information
describing the operations center that they are acting on behalf of. Each restricted system
operation requires this token to be passed for functional right verification purposes. If the token
contains the appropriate functional right to perform the operation, the system will then verify that
the user is logged
s

The system provides for the concept of a shared resource. A shared resource is any resource
that can be owned by a particular organization and is only allowed to be controlled by one
operations center at a time. Access to a shared resource is controlled through the functional
rights of the user attempting to gain con
th

January 30, 2003 Page 24

CHART II Software Development Guide � Version 1.0

4.2.4 Parameter-Driven System Properties

Each service in the system has a Properties File (also called a Props File) that controls its
behavior. This Java-standard approach of putting service parameters and their values in an
ASCII file provides a convenient way for the system administrator to document and change the
behavior of a service at start-up. Props Files should only be used to specify parameters that
cannot change while the service is running. The service must be restarted for any changes to
its Props File to take effect.

Property Files are preferred over storing these values in a database because a database is not
always available. Also, ASCII files facilitate documentation of system properties.

See Appendix B for a listing of System Property Files and associated contents.

4.3 HIGH-LEVEL DESIGN

Guidelines for the high-level design of the CHART II software are shown below.

High-Level Design Goals
• Gain a full understanding of the requirements for the release and verify that understanding

with the client/end user.
• Choose between competing technologies for implementation of requirements.
• Determine and document interfaces between system components.
• Determine and document deployment strategy.
• Describe user (functional) rights scheme. What rights grant access to which features.

Process
• Use Case Design
• Usability Design
• Architectural Prototyping
• Class Diagrams and Sequence Diagrams
• Other Diagrams
• Internal Reviews
• Document Key Design Concepts
• External Design Review

Use Case Design
• Every requirement must map to a use case.

o Verify requirement coverage.

• Every use case must have at least one requirement mapped to it.

o
o Forces us to update requirements to match what we plan to do. This aids the test

team later.

 Eliminate scope creep.

• Each use case and actor must have descriptive text that describes, in user language, the

purp eos of the use case.
o Facilitates agreement between Development Team and client on interpretation of

requirements.

January 30, 2003 Page 25

CHART II Software Development Guide � Version 1.0

• Use

o must be answered, and requirements/use cases/mapping must be
updated.

 case design leads to requirements questions.
Questions

Usability Design
• Scr

o Aids designers by reminding them of what data needs to be available.

• Usa it
o Used for highly complex interfaces such as map, traffic event dialogs, etc.

een Captures
o Provide screen mock-ups for new windows.
o Aids in customer understanding of system.

bil y Prototyping

Architectural Prototyping
• Use o

oncept.
final system.

 to client.
o Pas

 (OpenGL)

! Field Communications Architecture (Port Managers)

d f r proof of technology/concept.
o Quick functional program written to prove c
o Not code that will be used in
o Not usually shown

t examples
! CORBA architecture
! Java map feasibility
! Audio streaming

Class/Sequence Diagrams
• Create class diagrams that contain potential interfaces and major classes.

• Cre

o how major classes/interfaces collaborate to accomplish requirements of use
case.

ate sequence diagrams.
o
o Leads to changes in class diagrams as new interface needs are discovered.

Show

 At least one sequence diagram for every use case.

Other Useful Diagrams
• De

o onents/objects are expected to be running on which nodes in the
deployed system.

Pac g
ocument packaging of classes/interfaces for the release.

• Sta
o ument states an object can assume and stimuli that can cause state

ms

te

ployment Diagram
Shows which comp

ka ing Diagram (Component Diagram) •
o Used to d

te Diagrams

Used to doc
transitions.

• Activity Diagra

In rna el R views

l te m review of use cases and mapping to requirements. • Ful a

January 30, 2003 Page 26

CHART II Software Development Guide � Version 1.0

o Facilitates team understanding of what the system needs to do.

Full team review of all sequence/class diagrams.
tes collaboration and team buy-in.

Externa

•
o Facilita

l Review

• Pro c

o matrix.
o Pull all diagrams and text for actors, classes, use cases, etc, into Models section of

• Pro c

o Pick 3-5 major sequence diagrams to walk through.
ss relationships to highlight from class diagrams.

• Design

o Presentation of design to client, IV&V (Independent Validation and Verification), DB
team, QA team, project management, etc.

ed design of the CHART II software are shown below.

du e Design Document.
o Handwritten introduction including description of key design concepts.

Create functional rights

the design document.

du e Design Review Presentation.

o Pick 2-3 major cla

 Review Meeting.

4.4 DETAILED DESIGN

Guidelines for the detail

Detailed Design Goals
• Provide sufficient details to allow developers to quickly/easily implement release.

• ky and difficult portions of the system to implement.

Identify utility classes/methods that should be moved to common packages for use by
em components.

Work P

• Document intended implementation to allow wider scrutiny/exposure.
Identify ris

• Identify exact dependencies on outside designs such as database interface or external
systems.

•
multiple syst

roducts

• GUI Detailed Design Document

 Sequence diagram per non-trivial method in a class within a package
ctions with system

• Server Detailed Design Document

o Cla d
diagrams

 class within the package.

o
 Package descriptions
 Key design concepts

o
o Class diagram per package
o

 interao Notes describing user

o Key design concepts
o Pack ga e descriptions

ss iagram per package
o Sequence

! One for each non-trivial method of a

January 30, 2003 Page 27

CHART II Software Development Guide � Version 1.0

Process
• Class and sequence diagrams for server modules

ce diagrams for GUI modules
Other diagrams

• Ext a

Diagrams for Server Modules

• Class and sequen
•
• Internal reviews
• Produce documents

ern l reviews

• Create a class diagram for each server module needed.

ce.
o Properties class (if necessary) to front-end the getting of system/application

• Pro e

o rface methods should have diagrams.

o Diagrams should show all calls necessary to implement method and should show all
xceptions.

f DB class interface, which should be

Diagrams for GUI Modules

o Module class implements framework interfa

properties.
o DB class to provide interface to DB.
o IMPL classes to implement IDL interfaces.

vid sequence diagrams for non-trivial IDL and framework interface methods.
Startup/shutdown module inte

o CORBA ORB should be invoking actor on sequence diagrams detailing IDL
implementation methods.

possible returns/e
o

coordinated with DB team frequently.
 Diagrams should result in full documentation o

• Cre

o
 Properties class (if necessary) to front-end the getting of system/application

ram for module and
am for dialog classes, etc.

• Provide se

o Startup/shutdown/discovery should have sequence diagrams.
o Seq n

!
 should show class/user interactions needed to build data structures for IDL

call.
hould

ther Diag

ate a class diagram for each GUI module needed.
Module class implements application framework interface.

o
properties.

o
�wrapper� classes and another class diagr

 If module is large, can be helpful to show one class diag

quence diagrams for non-trivial IDL calls and framework interface methods.

ue ce diagrams for all IDL methods.
should have user as actor.

!

! should culminate in CORBA call to IDL method of interface class and s
show handling of all possible returns/exceptions.

O
•

rams
Creation of sequence diagrams should lead to identification of utility classes.

o Result in creation of new class diagrams or update of existing class diagrams.
o Often results in additional sequence diagrams to show implementation details for

 to provide documentation
and

utility.

• Use n a y other UML (Unified Modeling Language) based diagrams

 be done. analysis of how the implementation should

January 30, 2003 Page 28

CHART II Software Development Guide � Version 1.0

Internal Reviews
• Dia m

o ence diagram must have descriptive text.
o Eac c
o Eac

diagram
e access to an object (or call

must be static).
ss diagram must show a relationship between the classes, or

lass that returns an
ass to be used.

ding should be checked closely.

o nts

gra s for each package must be reviewed.
Each class/sequ

h lass must have descriptive text.
h method on sequence diagram must be shown as method of class on class

.
o To call a method of a class, the calling class must hav

! Cla
! Sequence diagram must show a call to a related c

instance of the cl
o Synchronization/threa

Pr duce Docume
• Wr

o Package descriptions
sign concepts

Pull models
ent.

Externa

ite base document for GUI and Server detailed design documents.

o Key de

•

o Pull class and sequence diagrams for each package into docum

l Review
• Distribute documents for external review.

• Pro c
o Pick 3-5 major sequence diagrams to walk through.

 Pick 2-3 major class relationships to highlight from class diagrams.

• Design Review Meeting
 management, etc.

5 NTATION

Guidelines for the development of the CHART II software are shown below.

Implem

du e Design Review Presentations (one for GUI, one for Servers).

o

o Presentation of design to client, IV&V, DB team, QA team, project

4. IMPLEME

entation Goals

• Hig
t plan.

• Ma
 Well documented.

 maximum possible extent.

always be aware of time constraints for current task.

h Quality
 Unit tested with documented teso

o Reviewed by peer(s).
intainable
o
o Matches design to
o Conforms to coding standards.

• budget On time/within
ld o Shou

Process
• Code/unit test iteratively.

January 30, 2003 Page 29

CHART II Software Development Guide � Version 1.0

• Inte
• Cod R

Bug Fixing.

Coding

grate into system build when code is ready for initial check-in.
e eview.

•

/Unit Testing
• Co to

o The design should be referenced during every step of coding.
 the design must be discussed with Team Lead.

• Get code running early

o Implement startup/shutdown methods.
ssary.

 as you go
it test it and document the test cases/results in the

• Inform Team Lead early if running behind schedule.

Integration

de the design

o Variance from

o Provide stubbed implementations where nece

• Unit test

o When a new feature is coded, un
unit test plan.

• Add new code/package to system build.

heck in new make file.
s, once for

jav c
o If n s

 Checked in version of code must build from this point forward.

Make new features available for others.
 with Team Lead to make new features available for others to use.

ule or service to set of running services on public server.
of new features so they can use them and provide

feedback.
 �released� version as coding is completed on additional features.

Code R i

o If new class in existing package, c
o If new package, add to \build\makefile.mak twice (once for package

ado).
ew erver, check in jar script, props file and template props files as well.

o

•
o

! Add mod
 Work

! Notify others of existence

 Periodically updateo

ev ews
• Sub t

n.

r should look for

nit testing.

g

mi code for review
o Include completed unit test pla

• Reviewe

o Correctness of code.
o Conformance to design.
o Conformance to coding standard.
o Thoroughness of u

Bu Fixing
• Level C database in ClearQuest.
• Bugs found when using �released� features from �integration� environment are submitted.
• Project has documented procedure for handling Level C bugs.

January 30, 2003 Page 30

CHART II Software Development Guide � Version 1.0

ClearCase (CM tool) Usage
Coding done in loc• al tip view.

Check-in code during development or when complete.
• Check-in comment must contain release and build or PR (problem report) number from

• Checked-in code must build in tip view.

r code review.
Check build in UNIT_TESTED view after labeling code.

acceptance testing of CHART II software are shown

Integra

• Add of new files to be approved by Team Lead.
•

ClearQuest.

• Apply UNIT_TESTED label on the version of code that has been unit tested and updated
afte

•

4.6 TESTING

Guidelines for integration, system, and
below.

tion Test
• Tes t
• Ins
• Tes a
• Tes a
• Mu le

ClearQuest (problem reporting tool) Usage
arQuest database used to track bugs � Level C.

hancements entered by any developer, assign to lead.
loper.

er moves PR to CODE_COMPLETED.
s code in build and verifies the PR has been resolved.

System

ts he interaction of components.
tallation on local systems.
t C ses written by developers.
t C ses executed by developers.

ltip iterations.
•

o Cle
o

 Lead does analysis, assigns to deve
 Bugs and en

o
o Developer does further analysis, provides a fix.
o

 Lead include
 When code is ready, develop

o

 Test
• Thi
• Ins
• Test cases written by test group based on requirements.
• Tes a
• Mu le
• Cle

 ClearQuest database used to track bugs � Level B.
nd enhancements entered by testers.

 each build.
eloper.
e and marks PR as CODE_COMPLETED.

lved.

rd-party testing.
tallation on dedicated test environment.

t c ses executed by test group.
ltip iterations.
arQuest Usage
o

 Bugs ao
rd decides what to include ino Problem Review Boa

o Lead assigns PR�s to dev
 Developer completes codo

o Lead includes code in build.
o Testers verify PR has been reso

Acceptance Test
• Tests that system will run properly in field environment.
• System test cases are run.
• Minimal developer involvement.

January 30, 2003 Page 31

CHART II Software Development Guide � Version 1.0

• Multiple iterations if necessary.
• Bugs tracked in ClearQuest (Level A).

4.7 INSTALLATION/SYSTEM UPGRADES

Due to the geographic distribution of the system and the phased implementation and
dep
des
occ
min
new

iding support for the devices would
need the new software. Other FMS systems could continue to run the old version of the

•

the disk, and then returning the disk to its default server.

o be
upgraded independently. FMS, CHART, AVCM, and the CHART Archive can each be

nding change in another, but
 between CI�s.

Guidelines
the

loyment approach, an upgrade strategy was considered in the overall CHART II system
ign and architecture to prevent significant disruption of the operational system that could
ur during the rollout of new releases. The design and architecture of the CHART II system
imizes the impact to operations and provides flexibility in the scheduling of the installation of
 hardware and software. This is accomplished in several ways.

• Mixed Revision Levels � The design and architecture of the system allows installations to

run different revision levels of the software. This allows a new release of a component to be
installed in a phased manner rather than requiring a one-shot upgrade of all systems. It also
allows for a selective upgrade strategy. For instance, if new protocols were added to
support new field devices, only those FMS systems prov

software until it is convenient or necessary to upgrade them as well.

Remote Installation � Through the use of COTS applications such as UNICenter TNG
Remote Control, the installation of software can be performed remotely. In addition, the
SAN (Storage Area Network) provides the capability to upgrade SAN-attached server
systems from a central site by temporarily reallocating SAN disks, upgrading the software on

• Modular Design � The modularity of the design allows CI�s (configuration items) t

upgraded independently of the others. In addition, the client side GUI�s can be upgraded
independently of the server side applications. Dependencies do exist between CI�s, and in
some cases, a change in one CI may necessitate a correspo
these dependencies are kept to a minimum and are isolated to the interfaces

for the creation of the Installation package for CHART II are shown below. Note that
 InstallShield software has been used to develop the Installation program for CHART II.

General
 Procedure should not require any special knowledge beyond being a system administrator.

te separate installation packages for servers, GUI, FMS.
uired system parameters.

r

eep system parameters to a minimum � most settings should be configurable on-the-fly.

r

•
• Crea
• Use ServerSettings.exe to prompt installer for req

o ServerSettings.exe is launched from InstallShield.
nses to create server-specific oo Combine template Props File with installer respo

GUI-specific Props File.
• K
• Be able to execute installation remotely � especially the GUI.
• Assume installation must be done on multiple servers.

e ver S
• Each service must be independently installable.

January 30, 2003 Page 32

CHART II Software Development Guide � Version 1.0

• Keep dependencies between services to a minimum � avoids illegal service combinations.
Ensure services may live on any computer in the network. •

GUI
• Keep procedure simple � there are many workstations to install.

May not be necessary once browser-based GUI is installed (future release/build).
• All GUI modules are separately installable.

FMS

•

• Keep the FMS installation package small � FMS� have slow links.

The system installation process is documented in the CHART II Operations and Maintenance
Guide.

4.8 SOFTWARE DEVELOPMENT WORK PRODUCTS

Table 4, below, provides information regarding CHART II software development work products
for each phase of the software development lifecycle. For each product, a brief description is
provided along with a reference to the applicable project document standard. The tools used to
create the product are also indicated. The standards are located on the CHART2-SVR1 server
under the PROJECT STANDARDS & PROCEDURES\CURRENT APPROVED directory.

January 30, 2003 Page 33

CHART II Software Development Guide � Version 1.0

Table 4 � CHART II Software Development Work Products

Phase Products Description Standards Tools
Business Area Architecture Requirements Prototypes • Software Prototypes to

identify and verify
requirements

• M361-PR-003 � Change
Control for Requirements

• Inprise JBuilder
• MS Visual C++

High-Level Design
(Architecture Document)
� Draft and Final

• Use Cases
• Class Diagrams
• Sequence Diagrams
• Packaging/Deployment

Diagram
• Accompanying Text

• M361-ST-018 � Design
Document Standard

• Telelogic Tau UML
Suite

• MS Word

Detailed Design � Draft
and Final

• Interface Definition Language
• Class Diagrams
• Sequence Diagrams
• Accompanying Text

• M361-ST-018 � Design
Document Standard

• M361-ST-004 � IDL
Coding Standard

• Telelogic Tau UML
Suite

• MS Word

Business Systems Design

Feasibility Prototypes • Software Prototypes to
determine the feasibility of a
development approach

• M361-PR-009 �
Configuration and Use of
ClearCase for CHART II
Prototype Software

• Inprise JBuilder
• MS Visual C++

Software Code • Software Code according to
defined coding and process
standards

• M361-ST-003 � Java
Software Coding/
Implementation

• M361-ST-004R0 � IDL
Coding Standard

• M361-ST-005R0 � C++
and Visual C++ Coding/
Implementation Standard

• Sun JDK
• Inprise JBuilder
• Iona ORBacus
• MS Visual C++
• Microsoft

Foundation Class
(MFC)

• Rational ClearCase
Unit Test Plans • Plans to prove software

capability in accordance with
requirements and design

• M361-PR-011 � Unit
Testing

• MS Excel

Application Development

Unit Tested Results • Documented unit test results
and approval

• M361-PR-004 �
Inspections and Peer
Reviews

• MS Excel

Testing � Integration Integration Test Plan • Test Plan with Test Cases • M361-ST-014 �
Integration Test Plan
Template

• MS Word

January 30, 2003 Page 34

CHART II Software Development Guide � Version 1.0

Phase Products Description Standards Tools
Integration Testing
Results

 • Report of Integration Test
results, integrated and tested
software, problem reports

• M361-PR-016 � Software
Control Notice

• MS Word
• Rational

ClearQuest
System Test Plan • Test Plan with Test Cases • M361-ST-008 � CHART II

Test Plan Template
• M361-ST-009 � CHART II

Test Procedure Template

• MS Word Testing � System

System Test Results • Report of System Test
results, integrated and tested
software, problem reports

• M361-PR-016 � Software
Control Notice

• MS Word
• Rational

ClearQuest
Acceptance Test Plan • Test Plan with Test Cases • M361-ST-008 � CHART II

Test Plan Template
• M361-ST-009 � CHART II

Test Procedure Template

• MS Word Testing � Acceptance

Acceptance Test Results • Report of Acceptance Test
results, integrated and tested
software, problem reports,
client acceptance

• M361-PR-016 � Software
Control Notice

• M361-PR-005 �
Configuration and Use of
ClearCase for CHART II
Software Development

• MS Word
• Rational

ClearQuest
• Rational ClearCase

Transition Transition Plan • Plan for transitioning
operation to new system

• M361-ST-015 � Transition
Plan Standard

• MS Word

Operation Support • Software support for analysis
and correction of defects

• CM Process • Rational
ClearQuest

January 30, 2003 Page 35

CHART II Software Development Guide � Version 1.0

5. System Environments

5.1 SOFTWARE DEVELOPMENT ENVIRONMENT

The CHART II software development environment, shown in Table 5, below, includes both
design and development tools. Both the software and hardware used in the development
environment are based upon a platform similar to that used for deployment. In most cases,
software is shown without specific versions due to the dynamic nature of COTS packages. The
latest version information is maintained by the Configuration Management Team.

Table 5 � CHART II Software Development Environment

Component Hardware Software

CHART II GUI
Workstation

Dual Pentium, Dual
Monitor, 256MB RAM

• Windows NT 4.0 with Service Packs
• Telelogic DOORS
• Telelogic Tau UML Suite
• Rational ClearCase
• Rational ClearQuest
• Microsoft Developer Studio
• Sun JDK
• Inprise JBuilder
• Iona ORBacus

Development Server Dual Pentium CHART II
Server Configuration

• Windows NT 4.0 with Service Packs
• CHART II Oracle Database
• Oracle 8i
• Lernout and Hauspie RealSpeak

Development Workstation Pentium • Windows NT 4.0 with Service Packs
• Telelogic DOORS
• Telelogic Tau UML Suite
• Rational ClearCase
• Rational ClearQuest
• Microsoft Developer Studio
• Sun JDK
• Inprise JBuilder
• Iona ORBacus

Development Workstation
for Text-to-Speech
Conversion

Pentium • Windows NT 4.0 with Service Packs
• Telelogic DOORS
• Telelogic Tau UML Suite
• Rational ClearCase
• Rational ClearQuest
• Microsoft Developer Studio
• Sun JDK
• Inprise JBuilder
• Iona ORBacus
• Lernout and Hauspie RealSpeak

January 30, 2003 Page 36

CHART II Software Development Guide � Version 1.0

5.2 INTEGRATION TEST ENVIRONMENT

Figure 6

Figure 6 � CHART II Software Development and Integration Test Configuration

, below, shows the CHART II software development and integration testing
configuration used at PB Farradyne (PBFI) and Computer Sciences Corporation (CSC).

CHART II Development LAN at PBFI

Comm Service
Eicon multiport internal

ISDN modem
Digiboard multiport modem
Dialogic Telephony Board

FMS
Test

Databas
e

56 Kbps
Frame Relay

CHART II GUI

CHART II GUI

CHART II GUI

CHART2-svr3
with CHART II server

T1 between PBFI & CSC US Robotics
Courier IModem

DMS Field controller
 or simulator

Dial ISDN Link

CHART II
Workstation

CHART II GUI

CHART II
Workstation

CHART II GUI

Development Workstation
CHART II GUI

CHART II
Oracle

Database

Telephony Board HAR Field controller
or simulator

POTS
Modem

Portable DMS
or simulator

POTS Line

ISDN Simulator

DMS Field controller
 or simulator

US Robotics
Courier IModem

5.3 SYSTEM TEST ENVIRONMENT

Figure 7, below, shows the CHART II system test environment at the Maryland State Lab
located at Computer Sciences Corporation. This environment was used for System testing.

January 30, 2003 Page 37

CHART II Software Development Guide � Version 1.0

5,0

DMS_Sim (9)

DEV1_RTR

SHACHRT2
110.22

CHART2_SVR1
113.5

CHARTLAB-SVR1
110.23

DEV_AVCM
Oracle DB

CHART 2 Services
CORBA Event & Trading

ORB
AVCM Services

110.25
114.25

Minihub

ATM NMS
114.18

LAB_AC
114.26

LAB_BC
114.47

XH SWITCH FABRIC APEX - IMX Redundant

DS3-2C HPG ATM CELL CONTROLLER

DS1-4CS VOICE SERVICE MODULE

DS1-4CS VOICE SERVICE MODULE

DAUI MS ETHERNET CONTROLLER

1

3

0

2

4

6

5

XH SWITCH FABRIC Standby

DAUI MS ETHERNET CONTROLLER

DS1-4CS VOICE SERVICE MODULE

DMLIM HS ATM CELL CONTROLLER

BLANK

DEV1
QEDOC IP = 20.2.114.2

SLOT 0 IP = 200.9.203.16
Node ID = 102

E.164 = 4102630000

2,0
LANE

DEV 1,1 to TEST 1,1

DEV 1,0 to TEST 1,0

TEST
QEDOC IP = 20.2.114.4

SLOT 0 IP = 200.9.201.16
Node ID = 104

E.164 = 3016950000

 XH SWITCH FABRIC APEX - IMX Non Redundant

DS3-2C HPG ATM CELL CONTROLLER

BLANK

BLANK

DS1-4CS VOICE SERVICE MODULE

DAUI MS ETHERNET CONTROLLER

1

3

0

2

4

6

5

DMLIM HS ATM CELL CONTROLLER

DS1-4CS VOICE SERVICE MODULE

2,
0

LA
N

E

Hub

TEST_WKS2
113.51

Minihub

TESTRemRtr
113.65

DEVTOCMUX
110.103

T1-1

5,0

TEST_WKS1
113.50

Test Router
113.33

TESTTOC-WKS
CHART 2 Client

AVCM Client
113.68

117.25

110.35

To CSC LAN

DEV_WKS1
CHART 2 Client

AVCM Client
110.17

CHART2LAB-SVR2
DNS Services

110.20

Catalyst 5000

CHART2_SVR2
Oracle DB

113.6

CHART2_WS
CHART 2 Client

AVCM Client
113.8

TEST_FMS
AVCM Server

113.45
114.45

110.201

CHART2_SVR4
113.7

3,0
T1 to PBFI

114.25

114.45

DEVTOCMUX
110.103

T1-1

DEVTOC-WKS
CHART 2 Client

AVCM Client
113.195

DEVRemRtr
113.193

FR Sim

FMS-SERVER1
NT Server

COM Port Manager

FMS-SERVER2
NT Server

COM Port Manager

56Kbps

56Kbps

Line Simulator

ISDN/5
POTS/3

IS
D

N
/1

P
O

TS
/1

DSU/CSU

ISDNPOTS

Analog Modems ISDN Modems

Digi Port
Concentrator

VerizonVerizon

DEV_WKS2
CHART 2 Client

AVCM Client
110.18

256 Kbps

256 Kbps

ISDN/5
POTS/2

EICON ISDN Card (2)
POTS Modem Card

EICON ISDN Card
POTS Modem Card

114.254

114.250

CHART II System Test Environment
MD State Lab

CHART2-RTR

LANEPOLCHART1
113.196

Simulated AOC

Telephony Board

Telephony Board

POTS/2

Figure 7 � CHART II System Test Environment

January 30, 2003 Page 38

CHART II Software Development Guide � Version 1.0

5.4 OPERATIONAL ENVIRONMENT

Figure 8

Figure 8 � CHART II Operational Environment

, below, illustrates the operational environment of the CHART II system.

MDOT WAN

Brooklandville
ATM Switch

Hanover
ATM Switch

Switches

Cisco 7206

CHART
Backbone

CHART Workstation

BA
Frame Relay

Cisco 7206

CHART Backbone

CHART Workstation
CHART Workstation Multiplexer

Cisco 2516

CHART Workstation

TOCs

Switches

Switches

NT Server 4.0 SP5
Oracle 8i RDBMS
CHART II Server Apps

Trader Service
Event Service
User Manager Service
Traffic Event Service
DMS Service
Message Utility Service
TSS Service
EORS Permit Service

NT Workstation 4.0 SP5
CHART II Client
AVCM Client

n x T-1CSU/DSU

Modem

CHART
II

Server

NT Workstation 4.0 SP5
CHART II Client
AVCM Client

Modem

CHART II Web
Server

EORS DB
Server

Switches

AOC
MDTA

KROWDAOR
21

M
-
A

0
3

1
-M

T
P

I
0

X
1

E

ISDN/
POTS Detector

CHART
Workstation

NT Workstation 4.0 SP5
CHART II Client
AVCM Client

Multiplexer

 T-1

Cisco 2516

NT Server 4.0 SP5
Oracle 8i RDBMS
CHART II Server Apps

Trader Service
Event Service
User Manager Service
Traffic Event Service
DMS Service
Message Utility Service
TSS Service
EORS Permit Service

Remote
 FMS

SERVER

CHART II
Server

0

SHAZAM

DMS

NT Workstation 4.0 SP5
CHART II Client
AVCM Client

Travelers
Information-

Tune Radio to
1650 AM

Modem

Detector

HARS Service
TTSService

HARS Service
TTSService

Comunications Service

SHAZAM

Travelers
Information-

Tune Radio to
1650 AM

Cisco 2524

NT Workstation 4.0 SP5
CHART II Client
AVCM Client

NT Server V4.0 SP5

Comunications Service

ISDN/POTS interface (COTS)

Greenbelt
ATM Switch

CHART Backbone

Cisco 7206

Telephony Board

BA
Frame Relay

Server

ISDN/POTS interface (COTS)
NT Server V4.0 SP5

Telephony Board

CSU/DSU

ISDN/POTS

HAR

KROWDAOR
21

M
-
A

0
3

1
-M

T
P

I
0

X
1

E

DMS

Remote
FMS

Modem

Cisco 2524

HAR

January 30, 2003 Page 39

CHART II Software Development Guide � Version 1.0

6. Additional CHART II Software Development
Guidance

6.1 GRAPHICAL USER INTERFACE

The CHART II Graphical User Interface (GUI) application framework is created and designed
with the dual purpose of providing a unified User Interface metaphor for the end-user and
providing a collection of reusable software components that facilitates the addition of new
features into the application by a programmer.

An essential component of a GUI application framework is a well-designed data model. The
data model is the core element that stores all data objects and allows other software
components (windows) interested in the data that those objects provide to attach as observers.
The model also includes a mechanism that allows an object to indicate that it has been modified
and provide hints as to how it has been modified. In this way, the data model provides a
mechanism by which objects may easily update all windows in the system when they have
received a state change event from a service application.

The data model in the CHART II GUI application provides observers with the ability to attach
varying priority levels which determine the acceptable delay between the point in time when a
data object detects a state change and that state change is conveyed to the end-user. This
capability allows windows that must be updated very rapidly to attach at the highest priority level
and windows that can tolerate some delay to attach at lower priority levels. The data model
aggregates updates during the delay period in order to avoid excessive repainting of GUI
screens. Thus, if a particular object is modified three times within a one-second period, a
highest priority window may render all three state changes while a lower priority window may
render only the final state of the object at the end of the period.

A central philosophy of the CHART II GUI application is the use of the object action paradigm.
Object action involves allowing the user to select the object or objects upon which he/she would
like to act and then allowing them to select from a list of actions which are pertinent to the
selected object(s). Another policy upheld throughout the GUI application is the concept of
object consistency. This policy states that if the user selects to operate upon an object,
regardless of which window that object has been selected from, the object will show a
consistent state and will allow the operator to perform consistent operations. These policies
imply that the objects within the CHART II GUI application must be capable of reporting their
state at any given point in time, and must be capable of creating a menu of currently available
operations. The menu infrastructure addresses the latter of these items. The framework
provides the Menuable interface that any object that would like to display a popup menu must
implement. This interface provides the object with information, such as the current user�s
access token, which it will need in determining which of its possible operations should be added
to a menu at this time.

During the course of his/her work, an end-user of the CHART II GUI may need to execute
commands that will take a significant amount of time for the system to execute. The user is
provided with two windows for viewing the status of outstanding requests and commands: the
command status view and the command failures view. The command status view provides the
user with a list of operations that they have attempted that have not yet completed. When a

January 30, 2003 Page 40

CHART II Software Development Guide � Version 1.0

command completes, it will be removed from the command status view. If it completed with a
failure, it will be added to the command failures view. This allows an operator to view a list of
system requests that have failed. Each entry in this window will contain a description of the
request, the date and time the request was issued, and text describing the reason the command

iled.

RT Workstation installations by providing
e capability to omit modules if they are not required.

 invoked by the user.
owever, this window can be minimized to keep it from popping up again.

rule allows for the planned creation of a browser-based GUI
ith no changes to the services.

I is not adversely affected by existing servers disappearing or new
ervers becoming active.

fa

The CHART II GUI implements an installable module framework. Modules manage collections
of closely related objects and functions that can be easily added to the GUI application. This
framework also provides for the customization of CHA
th

A concerted effort was made to avoid pop-up dialogs in the CHART II GUI. Pop-ups distract
busy operators because they force an operator to stop what they are doing to clear the pop-up.
Most dialogs have a status pane at the bottom that is used to display status for synchronous
commands that are executed from the dialog. Status/failure messages for asynchronous
commands are displayed in the Command Status and Command Failures windows, which can
be minimized or closed until needed. Popup windows may be used when a user invokes a
synchronous command that is only available from a menu item and the command fails. In this
case, a popup dialog can provide helpful feedback, since the user has to wait for the command
to complete and the feedback can be displayed immediately. However, status messages for
synchronous commands invoked from menus are also displayed in the Command Status and
Command Failures windows for consistency with asynchronous commands. The Unhandled
Resources dialog is the only dialog that pops up without any action being
H

A strict demarcation of responsibility is made between the servers and the GUI�s. The servers
only concern themselves with content and the GUI�s only concern themselves with presentation.
Although this seems an intuitive concept, it is sometimes difficult to implement. For instance,
should each operator be allowed to format a report differently or should the servers enforce a
system-wide standard? In all cases for CHART II, the GUI has complete control over
presentation. Adherence to this
w

Although the GUI is dependent on the servers for all operations, it is not dependent on any
particular server. This is evident in the fact that the GUI has no idea how many server instances
currently exist or should exist. It only knows the system objects that exist (e.g., DMS�, HAR�s,
Traffic Events, etc.) based on what CORBA offers by services and what it can do with them.
This also means that servers may go away and come back at any time, and the GUI�s will be
unaffected. Obviously, any objects served by missing servers are unavailable until the server
returns; however, the GU
s

The planned browser-based GUI uses the exact same interface to the servers as the existing
CHART II GUI. The implication of this is that the servers have no idea which user interface an
operator is using. The �push�-based update mechanism of the CHART II data model, which is
useful for driving window updates in the CHART II GUI, is not needed in a browser-based GUI
as browsers can only �pull� the data from the web server. In this case, it is only necessary to
update a cache containing the state of the system objects. However, there will only be one
cache to update for each web server in the system instead of one cache (data model) per user
that is used in the CHART II GUI. Therefore, a single connection to the CORBA

January 30, 2003 Page 41

CHART II Software Development Guide � Version 1.0

event/notification service is required to keep the cache updated for many users, as opposed to
one connection per user as required by the CHART II GUI.

r is
sponsible for managing all aspects of one type of object from object creation to deletion. All
r nsibilities regardless of what type of object they manage:

• rage and retrieval between service restarts
r discovery by the GUI and

 date
Object Support � provide object-specific actions such as retrieving current configuration

 without having to restart any other
ervice. This is demonstrated by the ability to upgrade a service by simply stopping it, replacing

rvice, but it will continue on if that
ervice does not exist. Obviously, any operations on one server that require operations from

ns centers� worth of services may live on one computer. All that is required is that
ll services can see each other and the CORBA services (Trader, Event, and Notification) on

the network.

• m Management � These entities consist of the complete suite of information to tie

together the users, roles and functional rights with the center's identification and logical

• n � These entities define the configuration of the system resources,

6.2 SERVICES

The CHART II services are a collection of executables that manage system objects. System
objects are things like devices, traffic events, traffic plans, or operators. Each serve
re
se vers have a few common respo

• Creation � create new objects
• Deletion � delete existing objects

Persistence � object sto
• Make Offers � advertise objects in the CORBA Trading Service fo

possibly other servers
• Retract Offers � remove CORBA offers once an object is deleted
• State � push object updates through event channels to keep all listeners up to
•
• Security � ensure only permitted users are allowed to perform object actions

Services are independent of each other in that they do not require any other service to be active
in order to run. This means a service may be restarted
s
a JAR file, and restarting it. No other service is affected.

Once running, one service may make a request to another se
s
another server will only work when both servers are running.

There is no requirement for all services to run on the same computer in the CHART II system.
Although historically one computer hosts all of the services for a given operations center, there
is complete flexibility in where services live. Each service may live on its own computer, or
many operatio
a

6.3 DATABASE

The CHART II database design consists of six major areas:

User/Syste

grouping.

Resource Configuratio
including devices (e.g., DMS�, HAR�s, SHAZAM�s, detectors, and cameras), and the
equipment inventory.

January 30, 2003 Page 42

CHART II Software Development Guide � Version 1.0

• Automated Planning � These entities represent planning objects such as message libraries,
schedules, and response plans.

Logging � Various system logs are maintained for communications, operations, and events

System Operation � These entities consist of information required for system operation that

External Systems � This refers to the external systems identified as interfacing with the

ta is performed in order to provide a consistent device
onfiguration. Replication of traffic event information is performed to recover in the event of a

s an IOR be stored in the database, logic should be included in the
rocess using the IOR to time out unresolved IOR references and look for new objects in the

Note that CHART II software development is performed on a local copy of the database which is
t ion database.

mmunicating via CORBA to provide a highly available system. Each FMS server
 a standalone system capable of communicating with any field device for which it has a

 is handled through the
HART GUI.

•
such as incidents, disabled vehicles, and weather advisories. See Section 6.6 for more
information pertaining to Logging.

•
are either part of the system parameters needed to run an automated system or data
received from an outside source but stored within the CHART II system.

•
CHART II database that are not part of the CHART II system but provide information that
may be stored as logging or tracking data.

Most of the CHART II data is replicated from the main SOC in Hanover to the AOC (Authority
Operations Center) at MdTA�s location for recovery purposes. The replicated data includes the
data classified as static data and logging. Static data is set up by an administrator for operation
of the system and is infrequently modified. Logging is part of system operation and tracks traffic
events. Logging data is typically maintained in the operational system for a period of two
weeks. Replication of static da
c
server failure. The entities that are not replicated are basically those that could be refreshed at
restart from the source database.

The database contains all current objects in the system. This includes all configuration data
necessary to reconstitute an object if that object�s server is suddenly restarted. The one piece
of an object that should not usually be stored in the database is its Interoperable Object
Reference or IOR. An IOR is the globally unique name that CORBA gives an object. The
problem with storing an IOR in the database is that the IOR contains the name of the computer
where the object�s service lives. If the given service is ever moved to a different computer (e.g.,
in a failover scenario), the IOR will no longer work, and the object will cease to exist. If a
situation absolutely require
p
Trader based on the object�s CHART ID. Each object in the system has a CHART ID that is
unique within the system.

upda ed periodically from the CHART II product

6.4 FIELD MANAGEMENT STATION

The Field Management Station (FMS) provides communications support functions for traveler
information devices, traffic detection devices, and other telecommunications support required by
the CHART II system. The FMS software, like the CHART II software, uses a distributed
architecture co
is
m
C

atching communications port type. All user interaction with the FMS

January 30, 2003 Page 43

CHART II Software Development Guide � Version 1.0

The FMS servers support the following types of communications ports:

ations with fixed DMS� and
RTMS (Remote Traffic Microwave Sensor) detectors.

thin a
lephone company central office (CO) for only a fixed monthly charge. As a result, FMS

dancy. Field devices may
e configured with both primary and backup FMS communication server designations. If the

 needed type (e.g., an ISDN port) and passes the telephone number to the
ort manager. Communications between the device object residing on the CHART II application

and attempts to
ake the connection. If successful, the device object then carries out its communications with

rvers. One is at the SOC and the other at TOC3 to coincide with
lephone company LATA (Local Access and Transport Area) boundaries. This arrangement

allows for reduced costs for calls to HAR�s by keeping the calls within the two LATA�s where the
d.

he other sign
odels and were used for later development and testing after the hardware simulators were

• ISDN (Integrated Services Digital Network) � used for communic

• POTS (Plain Old Telephone Service) � used for communications with portable DMS�.
• Telephony � used for communications with HAR and SHAZAM.

A telecommunications study revealed that ISDN was the most cost-effective medium for
communications with field devices because telephone tariffs allow unlimited calling wi
te
servers are located throughout the state at locations that meet the criteria for these tariffs.
Some are located in SHA or other agency buildings. Others are located in roadside huts.

This distribution of communications capabilities also provides redun
b
primary server fails with certain errors a specified (configurable) number of times, the
communications to the device is attempted through another server.

The basic functioning of FMS servers in operations is as follows. When communications with a
field device is required either through an operator action or regular poll, the device object
requests a port of the
p
server and the port manager on the FMS server take place using CORBA over the MDSHA
wide area network.

The port manager checks to see if a port of the requested type is available
m
the field device. The FMS server simply passes all communications in each direction.
Additional details of this operation may be found in the design documentation.

Similar operations occur for the other port types, except that the telephony board must use
DTMF (Dual Tone Multi-Frequency, i.e., touch tone) tones to control the HAR and SHAZAM. It
must also send and receive audio. Text-to-speech servers used for HAR messages are co-
located in two of the FMS se
te

HAR�s are currently locate

6.5 SIMULATORS

During the initial development stages of CHART II, hardware simulators were available for the
P9500 DMS, HAR and SHAZAM. Software simulators were developed for tF

m
returned to MDSHA and to provide for testing with multiple devices simultaneously. The
software simulators are also used in the CHART II production system for training.

January 30, 2003 Page 44

CHART II Software Development Guide � Version 1.0

Th software deve ice simulators were developed using a framework developed in Java that
n es that can be reused for different protocols and devices.
f ors exist for:

FP9500 DMS

he software device simulators are typically installed on a separate computer or computers that
have the desired communications capability (ISDN or POTS). This permits testing using a

nfiguration as is possible. The simulators are
usually installed as system services. Instructions for installing and configuring the simulators

ach service�s Properties File also specifies what logging level is desired. Two levels are

stopping, attempting to discover new
bjects, and object creation and deletion. Debug level logging includes the Production level and

Beyond Production and Debug, individual services are free to define their own logging flags.
as over 40 flags defined.

D public web site (www.chart.state.md.us

co sists of a number of utility class
So tware simulat
• Addco DMS
• FP1001 DMS
• FP2001 DMS
•
• PCMS (Display Solutions) DMS
• Sylvia DMS
• TS3001 DMS
• ISS AP55 HAR
• Viking SHAZAM

T

configuration that is as near to the production co

and the simulator installation packages are available on CHART2-SVR1\MODELS\DEV TEAM
INTERNALS\SIMULATOR INSTALLS.

6.6 SYSTEM AND DEVICE LOGGING

All services produce a log file containing significant activities. These logs are named with the
format of <service>_<date>.txt (e.g., DMSService_021225.txt). A parameter in each service�s
Properties File specifies the path where the log lives.

E
defined for all services: Production and Debug. Production logging is used for error conditions
and high-level informational messages such as starting,
o
is generally used to produce lower level messages for the same issues reported with the
Production level.

For instance, the DMS Service h

For services that talk to devices, an additional log can be created on a per-device basis. This
log is enabled by the operator on the device�s properties dialog.

6.7 WEB INTERFACES

M SHA maintains a) to inform users about traffic and
a about

HART. The traffic information provided in real-time on the web site includes:
w
C

e ther emergencies, traffic conditions, and both general and technical information

• Traffic flow information (current speed from RTMS vehicle detectors)
• Incident information
• DMS messages

January 30, 2003 Page 45

CHART II Software Development Guide � Version 1.0

• Indication of DMS and RTMS detector status (on/off-line, message active)

The information is provided to the web site via a CORBA interface that implements the IDL. The

events that are pushed for
y changes to the IDL that

affect these objects must consider the impact on the public web site.

web site software registers with the CORBA Event Service to receive
the DMS, Event, and TSS (traffic sensor system) objects. Thus, an

January 30, 2003 Page 46

CHART II Software Development Guide � Version 1.0

7.

7.1

CH
pro
des framework classes that are widely used in various CHART II service and GUI

odules:

• tility package
manages the display of online messages on a device. This class must be extended by

CHART2Service: The CHART2Service defined in the CHART.CHART2Service package is

•

eue and execute commands added to the queue in a first-in-
first-out fashion.

•
d to register service types, publish objects in

the CORBA Trader service, and get the server port number from the ORB.

• ject
side of the subject/observer pattern. This class contains methods that allow for storage,

 thread requiring database access gets a database connection from the pool of
connections maintained by this manager class.

•
anageable interface. It handles all interaction with the

WindowManager for attaching and detaching, as well as saving, the window position.

• age provides a default
implementation of the WindowManageable interface, and may be used as a base class for

DefaultServiceApplication: This class defined in the CHART.Utility package is the default

a used by this class to set
the ORB concurrency model, determine which ORB services need to be available, provide
database connectivity, etc. The property file also contains the class names of service

Adding New Features to CHART II

 CHART II APPLICATION FRAMEWORK CLASSES

ART II Service and GUI Application frameworks provide a set of reusable classes which
vide the same basic structure and functionality for all CHART II modules. Following is a brief
cription of all

m

ArbitrationQueue: This abstract class defined in the CHART2.DeviceU

device implementations to tailor message arbitration rules to meet their specific needs.

•
an application that helps in installation and termination of the modules in the CHART II
system.

CommandQueue: This class defined in the CHART2.Utility package provides functionality
to add a command to the qu

CorbaUtilities: This class defined in the CHART2.Utility package contains a collection of
static CORBA utility methods that can be use

DataModel: This class defined in the CHART2.DataModel package is used as the sub

efficient lookup, and updating of objects. It also provides for the attachment of observers at
various priority levels.

• DBConnectionManager: This class defined in the CHART2.Utility package implements a

database connection manager that manages a pool of database connections. Any CHART
II system

DefaultJDialog: This class defined in the CHART2.GUI package provides the default
implementation of the WindowM

DefaultJFrame: This class defined in the CHART2.GUI pack

other frame windows in the GUI.

•
implementation of the ServiceApplication interface. This class is passed a property file
during construction. This property file contains configuration dat

January 30, 2003 Page 47

CHART II Software Development Guide � Version 1.0

modules that should be served by the service application. During startup, the
DefaultServiceApplication class instantiates the service application module classes listed in
the property file and initializes each.

The DefaultServiceApplication class provides methods to publish objects in the trader and
maintains a file of offers that have been published in the Trading Service. It uses its offer ID
file to clean-up old offers prior to initializing modules during its next start. This keeps
multiple offers for the same object from being placed in the trader. This class also provides

Droppable: This interface defined in the CHART2.DataTransfer interface must be

FunctionalRightType: This class defined in the CHART2.Utility package lists the types of

GUI: This class defined in the CHART2.GUI package is the core of the CHART2 GUI

out, and management of the modules,
among other things. It is also a container for the important unique objects in the system

GUIMenuItems: This interface defined in CHART2.GUI package is used to define the text

• portable: This interface defined in CHART2.GUI package must be implemented by

any object which would like to allow the user to view it's detailed status in an InfoReport

•

I framework.

•

nu() method.

methods to manage event and notification service channel discovery, creation, and
registration.

•
implemented by any object wishing to take part in a drag and drop operation.

•
functional rights possible in the CHART2 system.

•
application. It is a singleton which starts up the application and handles all of the framework
functionality such as startup, shutdown, login, log

such as the DataModel, etc.

•
of all menu items which appear in the context menu. All menu items used by all modules
and objects should be added to this interface.

• GUIModelObserver: This interface defined in the CHART2.DataModel package must be

implemented by GUI components that would like to observe changes to the data model.

• IdentifierGenerator: This class defined in the CHART2.Utility package is used for

generating unique identifiers to be used to identify all identifiable CHART2 objects.

InfoRe

window.

InstallableModule: This interface defined in the CHART2.GUI package should be
implemented by any GUI module wishing to become created and installed by the GUI and to
participate in the GU

• Log: This class defined in the CHART2.Utility package is used by any CHART II system

objects to log system trace messages and stack trace to a text file.

Menuable: This interface defined in the CHART2.GUI package must be implemented to
support a context menu for the object via the GUI's makeMe

• NavClassFilter: This class defined in the CHART2.GUIUtility package is used to handle the

display of a list of navigator objects of a given class or subclass.

January 30, 2003 Page 48

CHART II Software Development Guide � Version 1.0

• Navigator: This class defined in the CHART2.Navigator package represents a window
which contains a tree on the left side and a list on the right side. Tree elements represent
groups of objects and the list on the right side represents the objects in the selected group.

of a Navigator
window.

•
e displayed in the tree (left) side of the navigator

window.

ed in the CHART2.Utility package is used by CHART II
service application objects to log the operations performed by the users of the system.

PushEventConsumer: This class defined in the CHART2.Utility package represents a

sh event channel.

• ushNotifyConsumer: This class defined in the CHART2.Utility package represents a
nnel.

• Pus This class defined in the CHART2.Utility package, represents a server
e ORBA push notification channel.

Service: This interface defined in the CHART.Utility package must be implemented by all

leanly shutdown and can be pinged to detect if they are

 must be

•

• NavListDisplayable: This interface defined in the CHART2.Navigator package must be

implemented by any object wishing to be displayed in the list (right) side

NavTreeDisplayable: This interface defined in the CHART2.Navigator package must be
implemented by any object wishing to b

• OperationsLog: This class defin

•

client side connection for a CORBA push event channel.

• PushEventSupplier: This class defined in the CHART2.Utility package represents a server

side connection for a CORBA pu

P
client side connection for a CORBA push notification cha

hNotifySupplier:

sid connection for a C

• QueueableCommand: This interface defined in the CHART2.Utility package must be
implemented by any device command in order that it may be queued on a CommandQueue.

•

services in the system that allow themselves to be shutdown externally. All implementing
classes provide a means to be c
alive.

• ility packageServiceApplication: This interface defined in the CHART.Ut

implemented by objects that can provide the basic services needed by a CHART II service
application. These services include providing access to basic CORBA objects that are
needed by service applications, such as the ORB, POA (Portable Object Adapter), Trader,
and Event Service.

• ServiceApplicationModule: This interface defined in the CHART.Utility package must be

implemented by all modules that serve CORBA objects. Implementing classes are notified
when their host service is initialized and when it is shutdown. The implementing class can
use these notifications along with the services provided by the invoking ServiceApplication
to perform actions such as object creation and publication.

ServiceApplicationProperties: This class defined in the CHART2.Utility package is used to
provide access to configuration parameters stored in the service application's property file.

January 30, 2003 Page 49

CHART II Software Development Guide � Version 1.0

• TokenManipulator: This class defined in the CHART2.Utility package contains all

kens which are required to invoke all of
the restricted access functionality in the system.

wManager: This class defined in the CHART2.GUI package manages
WindowManageables that are added to it and provides functionality for saving the window

.2 ADDING A NEW DEVICE

To

•
•
•

The following sections explain each of these steps in detail.

7.2

The n the process of adding a new device is to define the IDL for the device with the

•

•
•
•
•
•

vent the client from having to make follow up calls to get the supporting data.
ory interfaces to gain access to and manage the CORBA objects that implement

rred from one operations center
to another, the IDL interface defined should extend the TransferableSharedResouces
interface.

functionality for manipulating the CHART II access to

• WindowManageable: This interface defined in the CHART2.GUI package should be

implemented by anyone controlling a frame window in the CHART II system.

• Windo

positions and closing all of the windows.

7

add a new device to the CHART II application, the following steps should be followed.

Define the IDL interfaces to support new device functionality.
Create any new tables in the database and/or update existing tables.
Add a new server module to implement the interfaces defined in the IDL using the CHART II
service application framework.

• Add an installable GUI module to add device functionality.

.1 IDL Definition

 first step i
system interfaces discovered during the High Level Design. IDL coding standards should be
followed while defining the IDL. The following rules should be followed when defining the IDL.

Interfaces and data structures used should be well defined to describe all operations that
can be performed on the device.
Define the service types for all objects that are planned to be published in the trader.
If required, define the names of event channels that will be published in the trader.
Define all the exceptions that each operation defined in the interfaces can throw.
Define all CORBA events that will be pushed by the server module.
IDL interfaces should return as much information as possible related to the operation in
order to pre
Define fact•
the interfaces defined in the IDL. For example, use DMSFactory to manage DMS�.

• Interfaces defined to describe the device functionality should extend the
UniqueIyIdentifiable, GeoLocatable, and CommEnabled interfaces. Refer to the design
document for a description of these interfaces.

• If the new device being added requires the arbitration queue, the IDL interface defined
should extend the ArbitrationQueue interface.

• If the control of the new device being added can be transfe

January 30, 2003 Page 50

CHART II Software Development Guide � Version 1.0

• Avoid using ValueTypes because they cannot be used in events being pushed on CORBA
Notification Service channels.

7.2.2 CHART II Service Application Module

initi f CORBA objects that implement the interfaces defined in the IDL.
e installations by

req

The ceApplicationModule

Steps involved in initialization of a module are as follows.

1.
pes registered should also register the super types for each of the extending

2. defined in the property file that are specific to the module that is being
added.

3. Create and register any event channels that are needed to push device events defined in
pplier should be created for each event channel and should be

published in the trader using the ServiceApplication object.

h a
persisted ID during initialization in order to create the same IOR reference if the service is

The CHART II service application uses an installable module framework. A module manages
alization and shutdown o

This framework also provides for the customization of CHART II servic
providing the capability to pick and choose the modules that need to run on the same machine if

uired.

 new CHART II service application module should implement the Servi
interface and handle the initialization and shutdown of all the CORBA objects that it serves.

Register all service types of objects that will be published in the trader by this module. All
service ty
interfaces defined in the IDL. For example, if you are registering a service type for an
interface named CCTVCamera which extends the UniqueIyIdentifiable, GeoLocatable and
CommEnabled interfaces, in addition to registering the service type for CCTVCamera, you
should also register the service types for the UniqueIyIdentifiable, GeoLocatable and
CommEnabled interfaces as super types of CCTVCamera.

Read any properties

the IDL. A PushEventSu

4. Create a CommFailureDB class object to log all communication failure errors in the
database.

5. If required, create the factory implementation object that creates all device implementation
objects with the data read from the database. Activate the factory with POA using the ID of
the object and publish the factory object in the trader. The ID of the factory object should be
retrieved by calling the getPersistentObjectID() method of the CorbaUtilities class in the
Utility package by passing the name of the file in which the ID would be persisted. Typically,
a factory ID would be stored in a file matching the name of the class with the �.id� extension,
e.g., a DMSFactory ID would be stored in a file named �DMSFactory.id�. If the ID has not
been previously persisted, the getPersistentObjectID() method creates a new ID and
persists it in a file with the given name. It is important to activate the factory object wit

restarted.

A factory implementation class should implement the corresponding factory operations class
generated from the IDL. Upon creation, a typical device factory class retrieves device data from
the database, creates and activates all device objects implementing the device interfaces
defined in the IDL, and provides implementation for all operations defined in the factory IDL
interface. It should also handle any tasks such as pushing events periodically and checking for
uncontrolled resources using Timer objects. At shutdown, the factory object should gracefully
shutdown all device objects and any timer threads being used.

January 30, 2003 Page 51

CHART II Software Development Guide � Version 1.0

A class implementing the device interface should provide implementation for all operations
declared in the IDL device interface. It maintains device configuration and status data. It
should create a protocol handler class that implements the device specific protocol to
communicate with the field device. Some of the things to remember while implementing
operations defined in the interface are as follows.

• Check each input parameter for null because CORBA allows clients to pass null as an input

parameter to the server.
• Throw only those exceptions that are defined in the IDL for the operation.
• An operation is considered to be a success if the any changes to the object�s state resulting

from the operations are persisted in the database. Do not throw an exception for non-critical

Implementations of all IDL operations should inform the clients about the current status of

o access services provided by this module. For example, a GUICCTVModule should

ort the functionality to create response plan
ems with CCTV objects. At startup, the GUICCTVModule module should register with the

 creation supporter.

nd create
U or executing commands and add

ld discover CCTVCamera objects
d ust

ule

failures such as failure to push an event. If you are throwing an exception, make sure that
you have rolled back any changes to the object state to the prior state.

• Use synchronization for operations that change the object state because CORBA allows
objects to be called from multiple threads.

• Implementations of all IDL operations that require access verification should first verify if the
caller has the necessary privileges granted to perform the operation using the token passed
to them.

•
the operation including any failures using the command status reference passed to them as
an input parameter. The server object should first check that the command status reference
is not null before using it because a client that is not interested in the command status of an
operation can pass a null for the command status object. Make sure the completed()
method of the command status object is called when the operation is complete with or
without any failures.

7.2.3 New GUI Module

A typical CHART II GUI module extends PushConsumerPOA to receive CORBA events from
various events channels to which it is connected and handles the event data by updating the
related GUI objects in the data model. It implements the InstallableModule interface of the
CHART II GUI application framework in order to be created and installed when the GUI is
started. It also implements any additional supporter interfaces needed in order to allow other

odules tm
implement the NavFilterSupporter interface in order to support the functionality to create filters
for CCTV objects that are shown in the Navigator. If the CCTV objects can be used in response
plans, the GUICCTVModule module needs to implement the GUIResponsePlanItemCreator

terface to let the GUITrafficEventModule suppin
it
GUITrafficEventModule using the API provided as a response plan item

All GUI modules should implement the discoverObjects() method defined in the
nstallableModule interface to discover the objects in the trader they are interested in aI

G I wrapper objects with the actual CORBA object to call f
them to the data model. For example, GUICCTVModule wou
an create a GUICCTVCamera objects that wraps the CORBA object. All GUI modules m
also (1) implement the discoverEventChannels() method defined in the InstallableMod

January 30, 2003 Page 52

CHART II Software Development Guide � Version 1.0

interface to discover event channels in the trader they are interested in using the event channel
names declared in the IDL, and (2) register the PushConsumer with the event channel using

ss to receive the events pushed on those channels by the server.

olumns to be displayed on the Navigator list table, handle context menu creation when the
All GUI objects

the Navigator package and/or extend the NavTreeFilter class (or one of its subclasses)
d

sub
sho

All context menu options to be displayed when the mouse is clicked over the Navigator object
should
displayed in the Navigator list should implement the Menuable interface in order for the
Naviga
class imple Menuable interface should construct the context menu with valid options
that the
the object.

GUI wrapper objects that wrap the CORBA objects should cache the current state of the
I wrapper objects should call the CORBA object to

get the initial status when the GUI starts up. After this, the state should be maintained by

ovided to allow the user to query the current state of the object in case the CORBA
vent/notification service has dropped events. Any part of the GUI that is interested in the

Wra
the
CO
CO
exceptions defined for the operation in the IDL. Wrapper objects should throw GUIException for

the
the

All
Def to save the

7.3

The
dev

the API provided in the GUI cla

To display the group of newly added devices in the Navigator, implement a class that extends
the NavClassFilter and implement the Menuable interface. This class should define the
c
mouse is clicked on them, and handle options selected on the context menu.
that are displayed in the Navigator should implement the NavListDisplayable interface defined in

depending upon which side of Navigator they are displayed. If the objects need to be displaye
on the tree (left) side of the Navigator, they should extend NavTreeFilter or one of its

classes. If the objects need to be displayed on the list (right) side of the Navigator, they
uld implement NavListDisplayable.

be declared in the GUIMenuItems interface defined in CHART2.GUI package. Objects

tor to call the object on which the mouse was clicked to construct the context menu. The
menting the

 user can perform based on functional rights granted to the user and the current state of

CORBA object in the GUI for fast access. GU

processing the CORBA event/notification service events. However, a Refresh command should
also be pr
e
object's state should call the wrapper object to get the current state.

pper objects should provide API�s to other GUI objects similar to the operations defined in
 IDL for the CORBA object being wrapped so that interested GUI objects can use the
RBA object. The wrapper objects should handle CORBA exceptions, such as
MM_FAILURE and TRANSIENT, when calling the CORBA object in addition to the

any exception thrown by a CORBA call. The use of GUIException indicates to the catcher that
error has been logged and that the error message is user friendly and can be displayed to

 user.

new properties dialogs/screens required for the new device should extend the
aultJFrame class defined in the GUI package, which provides functionality

window positions when the windows are closed.

 ADDING A NEW MODEL OF AN EXISTING DEVICE

 CHART II system provides the framework to support multiple models of DMS and TSS
ices. To add a new model of a DMS or TSS, the steps below should be followed.

January 30, 2003 Page 53

CHART II Software Development Guide � Version 1.0

•
•
• support creation and control of the device of the new model.

Modify the GUI module to support the new model type.

7.3.1 IDL Modifications

HART II DMS and TSS control modules were designed taking into consideration the need to

•
•

.

•

new NTCIPDMS interface that extends the Chart2DMS interface with any new
operations that can be performed on the device.

 Add a new NTCIPDMSStatus valuetype that extends the Chart2DMSStatus

o Add new definitions to describe any extended status information made available by

II system, the following steps should
e used.

d rotocol handler class that implements the base protocol handler

interface which specifies a common set of API�s that must be supported by all models of the

class will implement the DMSProtocolHdlr interface defined in the CHART2.DMSProtocols
handlers communicate with the field device

ived.

terface and implementing the operations defined in
uld be registered with the POA

he protocol handler class for communications with the field device.
 valuetypes

for the ORB to find the classes automatically when

Add IDL modifications specific to the model being added.
Modify the database to support the new model.
Modify the server module to

•

C
support multiple models of DMS and TSS devices. To add a new model, follow the steps below.

Modify the IDL to add the new device model to the list of models in the IDL.
Add a new interface to the IDL to represent the new device model that extends the base
device interface

• Add a new status structure with model-specific data extending the base device structure.
Add any new definitions, such as extended status information that can be displayed to the
user in addition to the basic status already defined. For example, to add a NTCIP model of
a DMS to the CHART II system, the following modifications need to be made to the IDL:

o Add a model ID for the NTCIP model to DMSModelID enumeration defined in
�CHART2DMSControl.idl�.

o Add a

o
valuetype.

the NTCIP protocol.

7.3.2 Server Module Modifications

To add a new model of an existing device to the CHART
b

• Ad a new model-specific p

device. For example, to add a protocol handler for a NTCIP DMS, the protocol handler

package using the NTCIP protocol. Protocol
using a DataPort object, which is a port (direct connect, POTS or ISDN modem port) that
allows binary data to be sent and rece

• Implement the interface defined for the new model in the IDL. This involves extending the
class that implements the base device in
the IDL interface for the new model. The Impl class sho
using the tie class generated from the IDL, and the resulting CORBA object reference
should be registered in the CORBA trading service. The Impl class should create an
instance of t

• Implement any valuetype default factories and default implementations for new
defined in the IDL. Make sure the default valuetype factory and implementation class
naming conventions are followed in order

January 30, 2003 Page 54

CHART II Software Development Guide � Version 1.0

it tries to marshall/unmarshall the data during transport. For example, if an
NTCIPDMSStatus valuetype is defined in DMSControl IDL, default factory and default

ory and
NTCIPDMSStatusImpl respectively, and should be in CHART2.DMSControl package.

7.3

To

•
rapper object for the new model. For example, for a NTCIP DMS, you

should add a new class such as GUINTCIPDMSModelSupporter which implements the
GUIDMSModelSupporter interface and register the class with the GUIDMSModelFactory

je hen a new GUINTCIPDMS object needs to be added
to the system.

l. The new class should
extend the DefaultJFrame class and should implement the GUIModelObserver interface to

add a class that extends DefaultJFrame, and implements the
 implement

ides pixel

To add a new event type to the CHART II system, the steps below should be followed.

• Modify the TrafficEventManagement IDL to add a new interface and new event type
vent type.

• Modify the server module to support creation and control of the new event type.

cations

To add a new event type, make the following modifications to the TrafficEventManagement IDL.

Declare a service type for the new event type.
• Add any new events that need to be pushed for the new event type to the

TrafficEventEventType enumeration.
• Add any new fields that need to be added for the new event type to the

TrafficEventDataChanged enumeration.
• Define any data structures needed for the new event type.

implementation classes should be named as NTCIPDMSStatusDefaultFact

• Modify the code to create the objects of new model when the server starts up and for the
IDL operation to create the device. For example, for a DMS, the code to create the DMS
objects at startup and on-the-fly using the IDL interface is in the createChart2DMSImpl()
method of the DMSControlDB class. Modify this method to create a NTCIPDMSImpl if the
given model ID is NTCIP.

.3 GUI Module Modifications

add a new model of an existing device, follow the steps below.

Add a new model supporter class that implements the base model supporter interface that
can create a GUI w

ob ct. This supporter will be called w

• Add a new class to display the properties dialog of the new mode

get updates about any changes to the wrapper object while the dialog is open. For
example, for a NTCIP DMS,
GUIModelObserver interface. The NTCIP DMS properties dialog class may also
the DMSPixelStatusListener interface based on whether the NTCIP protocol prov
status or not.

7.4 ADDING A NEW TRAFFIC EVENT TYPE

• Modify the database to support the new e

• Modify the GUI module to support the new event type.

7.4.1 IDL Modifi

•

January 30, 2003 Page 55

CHART II Software Development Guide � Version 1.0

• Modify the TrafficEventEvents union to push appropriate data for the new event
• I needed, define a new valuetype that extends the BasicEventData valuetype

ent data.

type events.
f for the new

ev
• Add an event type ID to the TrafficEventTypeValues interface for the new event.
• Add a new interface to the IDL to represent the new event that extends the base

nd implementing the operations defined in
the IDL interface for the new event. The Impl class should be registered with the POA using

 the IDL, and the resulting CORBA object reference should be
registered in the CORBA trading service. The Impl class should provide implementation for

Implement any valuetype default factories and default implementations for new valuetypes
e sure the default valuetype factory and implementation naming

conventions are followed in order for the CORBA framework to find the classes

•
ype when the server starts up and for the IDL operation to

create the event.

To add a new event type to the CHART II GUI, follow the steps below.

tion for creating an
event of the type new event.

• ventNavGroup to handle an action to create an event of type new event.
Add a GUI wrapper object to wrap the functionality of the CORBA object of the new event.

Modify GUITrafficEventHolder to handle creation of the event of type new event.

 events pushed for the new event.
Create a JPanel class to display event data that is specific to the new event and add it to the

.5 ADDING A NEW ALGORITHM

The in adding a new algorithm to the CHART II system are similar to the steps
r adding a new device. The various steps involved are as follows.

TrafficEvent or RoadwayEvent interface.

7.4.2 Server Module Modifications

To add a new event type to the CHART II system, the steps below should be followed:

• Implement the interface defined for the new event in the IDL. This involves extending the

class that implements the base event interface a

the tie class generated from

the methods defined in the new event IDL interface.
•

defined in the IDL. Mak

automatically when trying to marshall/unmarshall the data during transport.
Modify the code in the createTrafficEventImpl() method of the TrafficEventGroup class to
create the objects of new event t

7.4.3 GUI Module Modifications

• Add the new event type to GUIMenuItems to add the context menu op

• Add a button to the CommLogDialog class to create an event of type new event.
Update E

•
• Update the GUITrafficEvent class to add type name and value for the new event.
•
• Modify TrafficEventPushReceiver to process CORBA
•

event dialog.

7

 steps involved
fo

• Define the IDL.

January 30, 2003 Page 56

CHART II Software Development Guide � Version 1.0

• Add a service application module to create the CORBA objects that implement the
algorithm.

• Add an installable GUI module to display the algorithm-specific screens.

January 30, 2003 Page 57

CHART II Software Development Guide � Version 1.0

8. Additional CHART II Software Development
Resources

CHART

the co ART II developers web site has been created and
ained to s useful for training or reference. It was created to
e ready s of useful documentation and to serve as a source

rmation e via various reference documents but not easily
le. It (e.g., which functions of CORBA

mation that was often related during training or

T II release/build.

s to JavaDocs for the Java Development Kit, CHART II and the CORBA ORB �
vaDocs produced by a Java documentation tool in an HTML

s to pro L code.

RT II This is a set of �home grown� guidance gleaned
m exper e coding standards with �best practice� or

 link to th latest release of CHART II.

link to U a template, test plans and test results for the latest
lease.

n individu the JBuilder Java development tool.

nk to th se.

ip for ho blems.

ss-re and IP addresses (outdated but useful

 contac on accessing the web site.

8.1 II DEVELOPERS WEB SITE

During urse of development, a CH
maint store information identified a
provid access to electronic version
for info that might be availabl
accessib contains information gained through experience
are useful and how do they work) and infor
coaching by more senior developers on the project.

The site contains the following:

• Links to design documents for the latest CHAR

• CHART II Contacts List.

• Link

Ja are code documentation
format that facilitates navigation.

• Link ject coding standards for both Java and ID

• CHA Programming Style Guidelines �

fro ience that is intended to supplement th
�project practice� information.

• A e results of code reviews from the

• A nit Test plans including

re

• A al�s note on why and how to use

• A li e database design for the latest relea

• A t w to resolve some common database pro

• A CHART II CORBA primer.

• A cro ference of developer machine names

during testing).

• A list of useful utilities.

Please t MDSHA for information

January 30, 2003 Page 58

CHART II Software Development Guide � Version 1.0

8.2 CHART II WEB SITE READING ROOM

eading site also contains additional documentation related
cluding architecture, design, integration and test, and

The �Reading Room� web site is located at
hart.sta om.asp

The �R Room� on the CHART II web
to development of the CHART II system, in
operations and maintenance resources.
www.c te.md.us/readingroom/readingro .

ECOM CUMENTATION

 6, below S and software documentation and resources suggested

8.3 R MENDED THIRD-PARTY DO

Table , identifies additional IT
for CHART II software development.

Table 6 � Recommended Third-Party Documentation

Category Document/Resource

Java Programming www.java.sun.com

CORBA Development Java Programming with CORBA, Gerald Brose,

w.iona.org
Andreas Vogel, and Keith Duddy, 2001.
ww ,

gwww.corba.or

Oracle Database Development www.oracle.com

Object Oriented Design and
Development

UML Distilled, Applying the Standard Object Modeling
Language, Martin Fowler with Kendall Scott, June
1998.

TMDD (Transportation Management
Data Dictionary) Standards

www.ite.org/tmdd,
www.tmdd.org

NTCIP Standards www.ntcip.com

January 30, 2003 Page 59

www.chart.state.md.us/readingroom/readingroom.asp
www.java.sun.com

CHART II Software Development Guide � Version 1.0

Appendixes

APPENDIX A � LIST OF ACRONYMS

AOC Authority (MdTA) Operations Center

 Vehicle Location
Area Architecture
cuit Television

ted Highways Action Response Team
 Item

figuration Management
ity Model

n Object Request Broker Architecture
COTS Commercial Off-the-Shelf
CSC Computer Sciences Corporation
DB Database
DBA Database Administrator
DBMS Database Management System
DMS Dynamic Message Sign
DNS Domain Name System
DTMF Dual Tone Multi-Frequency
EORS Emergency Operations Reporting System
FCA Functional Configuration Audit
FHWA Federal Highway Administration
FITM Freeway Incident Traffic Management
FMS Field Management Station
FTP File Transfer Protocol
GIS Geographic Information System
GUI Graphical User Interface
HAR Highway Advisory Radio
ICD Iterative Custom Development
IDL Interface Definition Language
IEN Information Exchange Network
IOR Interoperable Object Reference
ISDN Integrated Services Digital Network
ITS Intelligent Transportation Systems
IV&V Independent Validation and Verification
JDK Java Developer�s Kit
JHU/APL Johns Hopkins University/Applied Physics Laboratory
LATA Local Access and Transport Area
MDSHA Maryland State Highway Administration
MdTA Maryland Transportation Authority
MFC Microsoft Foundation Class
MSP Maryland State Police
NTCIP National Transportation Communication ITS Protocol
ORB Object Request Broker

ATM Asynchronous Transfer Mode
VCM ATM Video Control Module A

AVL Automatic
 BAA Business

CCTV Closed Cir
CHART Coordina
CI Configuration
CM Con
CMM Capability Matur
CO Central Office
CORBA Commo

January 30, 2003 Page 60

CHART II Software Development Guide � Version 1.0

PBFI PB Farradyne Inc.
PCA Physical Configuration Audit

A Portable Object Adapter

Systems and Software
1B3 Release 1, Build 3 of the CHART II System

P Request for Proposal
rowave Sensor

P Standards and Procedures

ty)

ANSCOM Transportation Operations Coordinating Committee
S Traffic Sensor System

gy
g Language

Accelerated Application Development

PO
POC Point of Contact
POTS Plain Old Telephone Service
PR Problem Report
QA Quality

S Quality
Assurance

QS
R
RF
RTMS Remote Traffic Mic
S&
SAN Storage Area Network
SCAN Surface Condition Analyzer (from Surface Systems, Inc.)
SCN Software Control Notice
SDP Software Development Plan

 UniversiSEI Software Engineering Institute (Carnegie Mellon
SOC Statewide Operations Center
TMDD Transportation Management Data Dictionary
TOC Transportation Operations Center
TR
TS
TTS Text-To-Speech

D-CATT University of Maryland Center for Advanced Transportation TechnoloUM
UML Unified Modelin
X/AD
XML Extensible Markup Language

January 30, 2003 Page 61

CHART II Software Development Guide � Version 1.0

APPENDIX B � SYSTEM PROPERTY FILES

Every service in the CHART II system has a Property File associated with it. These files provide
ese values are changed
ew value to take effect.

ptions.

this Appendix:

DMSService.props

Notserv.props

UMService.props

each service with parameters the service should use at startup. If th
nwhile the service is running, the service must be restarted for the

These properties give a system administrator access to the various service o

sted in The following Property Files are li

CHART2GUI.props •
•
• EORSService.props
• HARService.props

MsgUtilityService.props •
•

TrafficEventService.props •
• TSSService.props
•

January 30, 2003 Page 62

CHART II Software Development Guide � Version 1.0

CHART2GUI.props

This is the properties file used by the CHART 2 GUI Application.

le modules to load

uleClassName1 = CHART2.GUIDMSModule.GUIDMSModule

.ModuleClassName4 = CHART2.GUIPlanModule.GUIPlanModule
viceModule
le
e
MModule

I.ModuleClassName9 = CHART2.GUITrafficEventModule.GUITrafficEventModule
I.ModuleClassName10= CHART2.GUIFieldCommsModule.GUIFieldCommsModule

 Valid values are DEBUG or PRODUCTION

I.LogLevel = PRODUCTION

Days = 7

Number of seconds between discovery cycles after the GUI has
een running for a long time (discovery may happen more frequently

nt

ects after

.CompletedCommandStatusRemovalDelaySeconds = 60

operations center that this GUI should log into

.OperationsCenterName = AOC

 the Chart Chat program. The button for
e on the toolbar unless this command

s populated. If the Chart Chat program is not installed comment
he command must be
rom the command line

ctory.

All properties in this file are added to the application properties.
Vendor code like the ORB and Oracle access properties from the
system properties and thus including their properties in this
file allows all properties needed by the application to reside
in the same file.

Installab

GUI.ModuleClassName0 = CHART2.GUIUserManagementModule.GUIUserManagementModule
GUI.Mod
GUI.ModuleClassName2 = CHART2.GUILibraryModule.GUILibraryModule
GUI.ModuleClassName3 = CHART2.GUIDictionaryModule.GUIDictionaryModule
GUI
GUI.ModuleClassName5 = CHART2.GUIServiceModule.GUISer
GUI.ModuleClassName6 = CHART2.GUITSSModule.GUITSSModu
GUI.ModuleClassName7 = CHART2.GUIHARModule.GUIHARModul
GUI.ModuleClassName8 = CHART2.GUISHAZAMModule.GUISHAZA
GU
GU

Level of logging for the log file.

GU

Number of days to keep the log files around.

GUI.LogKeep

b
after the GUI is first started). This is used to find new eve
channels and new objects in the system.

G

UI.DiscoveryPeriodSeconds = 7200

Indicates how long (in seconds) to display command status obj
the command has been completed.
 #
GUI

Name of the

#
GUI

This command is used to start
 Chart Chat will not be visibl#
i
out the command, as shown below, using the #.T
of the same format used to start the program f#

while in the Chart2GUI dire
 An example is shown below. #

January 30, 2003 Page 63

CHART II Software Development Guide � Version 1.0

GUI.ChartChat = javaw -classpath ../../lib/ChartChat.jar ChartChat.Client.ChartChat

This command is used to start the SHADE. The button for
HADE will not be visible on the toolbar unless this command

 comment
ut the command, as shown below, using the #.The command must be

o start the program from the command line
while in the Chart2GUI directory.
n example is shown below.

iexplore http://www.shadesite.org

Directory where image files are located for the GUI

CHART2 HelpSet Location for online help.

GUI.HelpSetLocation = Help/CHART2HelpSet.hs

The frequency with which each service is pinged
to check whether it is alive, in seconds.
This is used only if the GUIServiceModule is installed.

#GUIServiceModule.ServicePollIntervalSec = 60

The frequency with which the GUIServiceModule
queries the trading service for new services, in seconds.
This is used only if the GUIServiceModule is installed.

#GUIServiceModule.ServiceDiscoveryIntervalSec = 900

Interval that the GUI will wait when attempting to contact a server.
This property governs only the initial connect time to the service in question.
Once
the connection has been established, the GUI timeout is dependent on the ORB
request timeout set below.

If this value is not specified, the timeout will be infinite. This could cause
eternal
hangs in the GUI if a service machine is shutdown.

GUI.ORB_connect_timeout_millis = 5000

Interval that the GUI will wait when attempting to contact a server.
This property governs the total time to respond to the service in question.

If this value is not specified, the timeout will be infinite. This could cause
eternal
hangs in the GUI if a service machine is shutdown.

GUI.ORB_request_timeout_millis = 30000

List of DMS message formatters. These default formatters will be added to the list

host=

S
is populated. If the SHADE program is not installed
o
of the same format used t

A

#GUI.Shade = c:/Program Files/Internet Explorer/

#GUI.ImagesDirectory = /images

January 30, 2003 Page 64

CHART II Software Development Guide � Version 1.0

of DMS geometries in
the user when he/she

the system to compile a list of possible formatter options for
is editing a DMS stored message. Ideally, these should be set

to match the sign geometries in the deployed system. If this is the case, the user
iscovered yet.

mation

 pixels for each
Specified in NTCIP

 as vmsCharacterWidthPixels.
ormatter Character Height - Integer represents the horizontal pixels for each
 character in the sign's font. Specified in NTCIP

 as vmsCharacterHeightPixels.
idth - Integer represents the total horizontal pixels on

CIP as vmsSignWidthPixels.
ormatter Total Pixel Height - Integer represents the total vertical pixels on the

xels.
ages.

21, 2
 21, 2

DMSModule.MultiFormatter3 = SHA, 5, 7, 105, 21, 2

ame of the default lane configuration that appears in
 is opened.
to: 4 lanes each direction with

TrafficEventModule.DefaultLaneConfigName = 4 lanes each direction with shoulders

en the commlog
database

ault delay for subsequent commlog refresh's

UITrafficEventModule.DelayForSubsequentCommLogRefresh = 14400

c messages printed by the ORB.

will only see the default formatters if no DMS objects have been d

Each formatter should contain the following comma delimited infor

 # Formatter type - String Valid values are - SHA
Formatter Character Width - Integer represents the vertical

 character in the sign's font. #
 #
 F#

Formatter Total Pixel W#

the sign.
 Specified in NT#
F
sign.
Specified in NTCIP as vmsSignHeightPi

sMaxP# Formatter Max pages - Integer Specified in NTCIP as vm

IDMSModule.MultiFormatter0 = SHA, 5, 7, 50, 21, 2 GU

GUIDMSModule.MultiFormatter1 = SHA, 5, 7, 90,
UIDMSModule.MultiFormatter2 = SHA, 5, 7, 100,G
GUI

 List of DMS font files to load. #

GUIDMSModule.DMSFont0 = fw07x5s.fnt

 #
N
the list of lane configurations when a new event
If this value is not specified, it will default #

shoulders
 #
GUI

Value of the delay after the gui starts up wh
 should be refreshed with the values from the #

GUITrafficEventModule.DelayAfterStartupForCommLogRefresh = 1800

Value of the def#

G

e Orbacus ORB. Refer to the ORB documentation # Settings for th
for usage. #

Indicates the output level for diagnosti

#ooc.orb.trace.connections=10

Indicates the client-side concurrency model.

c.orb.conc_model=threaded oo

January 30, 2003 Page 65

CHART II Software Development Guide � Version 1.0

Indicates the server-side concurrency model

.orb.oa.conc_model=thread_pool

ndicates how many threads are in the thread pool;

.orb.oa.thread_pool=50

his setting is mainly for preventing user from bringing up several instances
EVA31)

TradingService

ooc

I

ooc

T
of the GUI on the same machine. (see L

ooc.orb.oa.port=1000

Indicates the trading service that will be used to lookup objects.

ooc.orb.service.TradingService=corbaloc::chart2-svr5:8002/

January 30, 2003 Page 66

CHART II Software Development Guide � Version 1.0

DMSService.props

This is the properties file used by the DMS Service Application.

ll properties in this file are added to the system properties.
e the ORB and Oracle access properties from the

s in this
eside

n the same file.

Password to be used to connect to the database

ms

tored so that they
eshOffers flag.

A
Vendor code lik
system properties and thus including their propertie
file allows all properties needed by the application to r
i

Name of this service.

DefaultServiceApplication.ServiceName=DMSService

Refresh Trader Offers flag. Set this flag to true when you want
all previous trader offers made from within this app to be withdrawn
prior to starting service modules. Also allows service modules
to publish objects that are de-persisted from the database.

DefaultServiceApplication.RefreshOffers=true

DB Connection String for Oracle Database

DefaultServiceApplication.DBConnectString=jdbc:oracle:thin:@chart2-svr3:1526:SOC3

User name to be used to connect to the database

DefaultServiceApplication.DBUserName=DMSService

DefaultServiceApplication.DBPassword=chart2d

Maximum number of connections for DBConnectionManager to allocate.

DefaultServiceApplication.DBMaxConnections=10

Interval for DBConnectionManager to scan list of in-use connections
to detect threads that have exited without releasing connection.
(milliseconds)

DefaultServiceApplication.DBConnectionMonitorInterval=5000

Interval for OperationsLog to write queued items to the database.
(milliseconds)

DefaultServiceApplication.OperationLogInterval=5000

Network connection site of the service

DefaultServiceApplication.NetConnectionSite=chart2-svr5

Name of file where trader offers are s
 can be cleaned up later using the Refr#

January 30, 2003 Page 67

CHART II Software Development Guide � Version 1.0

DefaultServiceApplication.OfferFilename=DMSServiceOffers.txt

Number of days to keep old log files

eferences for initial services. (Default 1)

aultServiceApplication.ResolveInitialReferenceTries=2

ervices

tMillis=120000

e needs

rvice should

 actual system properties (in minutes)

esRefreshMins = 60

e,

round

f

ueue checks with the entry owner (the object that placed
erifies that the entry should be
turn either VALID or INVALID. If

t cannot be reached, however, then the entry is considered marginal. Meaning, the

Name to be prepended to the date to name the log file

DefaultServiceApplication.LogFileName=DMSService_

Logging level. Valid values are production or debug

DefaultServiceApplication.LogFileLevel=production

DefaultServiceApplication.LogFileKeepDays=7

Number of tries to make when resolving r

Def

Amount of time to wait for establishing a connection for requests to o
specified in milliseconds.

ther s

DefaultServiceApplication.ORBConnectTimeoutMillis=5000

Amount of time to wait for requests to other services to complete, specified
in milliseconds.

efaultServiceApplication.ORBRequestTimeouD

Class names of ServiceApplicationModules to be instantiated
and run by this service.

ControlModule.DMSControlModule DefaultServiceApplication.ModuleClassName0=CHART2.DMS

 Property key used to specify if the servic#
notification event service access.

v # By default it is set to false. Refer ServiceApplicationProperties.ja

DefaultServiceApplication.InitNotificationService=true

System profile cache refresh interval, i.e. the amount of time this se
refresh its system
properties cache with the#

MSControlModule.SystemPropertiD

This property controls the behavior of the arbitration queue and, therefor
affects the message that is displayed on an online device.
Each time the arbitration queue evaluates (either due to automatic backg
re-evaluation, or due to entries added, removed, re-prioritized) the queue

etermine if it should be allowed on the device. I# inspects each entry to d
all checks succeed, the q#

the entry on the queue in the first place) and v
 allowed. If the owner can be reached it will re#
i
owner may no longer want this message on the device, but we cannot tell. This
property controls how the arbitration queue will deal with such entries. If this
property is set to 'true', then marginal entries will be allowed to be displayed

January 30, 2003 Page 68

CHART II Software Development Guide � Version 1.0

on the DMS. In this case the entry will be seen by motorists until the arb queue
entry times out, at which time the entry will be removed from the queue entirely.

ot
e message for a marginal entry to be displayed. The entry will remain

verification call is made to the entry owner..

id values:

 Marginal entries are not displayed on the DMS.

efault value: true

see DMSControlModule.EvaluateQueueSecs for frequency of queue background evaluations
ee DMSControlModule.QueueEntryTimeoutMins for duration of queue entry timeout

ule.AllowMarginalQueueEntriesToBeActive=true

sk. This is NOT the Comm Loss Timeout. Each DMS holds and

 each DMS, although depending on the DMS model, it may or may not

ch DMS will be checked to see if it has exceeded its own Comm Loss

eout occurs before the DMS is checked again and
setting of this parameter is a tradeoff between

 expense of checking for the timeouts.
eouts is relatively inexpensive (i.e.,

o comms to signs are attempted in checking for Comm Loss Timeout), so this

 the
lds and controls
f each DMS). This
f it has exceeded

ts own timing interval. Note also that this property should be considerably
t polling interval for any DMS. If a DMS is set for a
nutes and this parameter is set to 20 seconds, that

y more than) 4:19 between polls.
that same DMS might go as much as

or slightly more than] 5:59 between polls -- not good if that DMS has a Comm
ight delays,
s. Therefore,

at each DMS's polling interval plus the value of this property is
 Timeout by a safe margin. The setting of this
en the consistency of steady, rhythmic polling

occurs often enough in all cases) and the
the need. While checking for the need to

nsive (no comms to signs are attempted unless it
ronously, on a separate
ecise, highly rhythmic
ough to achieve polls
onds is a reasonable

DMSControlModule.PollTimerDelaySecs=20

If, on the other hand, this property is set to false the arbitration queue will n
allow th
on the queue until it times out, but will not be allowed to be active unless a
successful

Val
true - Marginal entries are displayed on the DMS.
false -

D

s

DMSControlMod

This property specifies the delay, in seconds between executions of the
CheckCommLossTa
controls its own Comm Loss Timeout. (The Comm Loss Timeout is a configurable
property of
be relevant or changeable). This CommLossTimerDelaySecs property specifies
how often ea
Timeout. Note that when a DMS exceeds its Comm Loss Timeout, it is not
immediately recognized by the Chart II software, and it will not be recognized
until the the DMSes are next checked. How often that happens is controlled by
this property. So if the Comm Loss Timeout for a particular DMS is 5 minutes,
and this property is set to 30 seconds, it may virtually immediately or it be
up to 30 seconds after the tim
the timeout is detected. The #

accurate reflection of reality and the
 However, in this case checking for tim#
n
property can be set fairly low without incurring significant overhead. 30
seconds is the default. 5-30 seconds is a reasonable range.

DMSControlModule.CommLossTimerDelaySecs=30

utions of# This property specifies the delay, in seconds, between exec
PollDMSTask. This is NOT the polling interval. Each DMS ho#

its own polling interval (which is a configurable property o
 property specifies how often each DMS will be asked to see i#
i
smaller than the smalles
polling interval of 4 mi#

DMS will sometimes go as much as (or slightl
 (If this parameter were set to 120 seconds, #
[
Loss Timeout of five minutes.) Note that there may be other sl

o a perhaps few seconds or so, in the polling proces# amounting t
take care th#

less than the DMS's Comm Loss
twe# parameter is a tradeoff be

(not too important as long as it
 DMS for # expense of checking each

inexpe# poll is relatively
actually is time to poll and even that occurs asynch
thread), there is no reason to attempt to achieve pr
polling. This parameter needs to be set only low en
often enough. 20 seconds is the default. 15-30 sec
range.

January 30, 2003 Page 69

CHART II Software Development Guide � Version 1.0

This property specifies how long the background polling task should wait for a

. Note that this property does not affect how long
user command to a DMS (including a poll command

h, because
onger than

round polling
polls will
user commands
ager). This

o go into Comm Loss timeout and blank themselves. The
efault for this parameter is 90 seconds. This parameter should be set to at
east two times the typical usage time of the slowest type of modem (POTS,

age): that is, at least 50-60 seconds. A maximum
ue. The default is 90

t2DMSFactory
lled by a

in. A DMS is controlled by an
sage on it or if it is in

maintenance mode. The setting of this parameter is a tradeoff between
etecting an abandoned DMS very quickly and the expensive of checking for

for immediate detection of
elayed detection is relatively

ication
 default.

nds) the DMS Service will write a
used when the DMS Service starts up

n order to estimate the time the DMS Service has been down. This property should
is reasonable, but not so small
tamps. A value between 15 and 60

s 30 seconds.

ControlModule.RecoveryTimerDelaySecs=30

 the type of debug-level logging to do. This
if DefaultServiceApplication.LogFileLevel is
s property is intended for the use of

oftware engineering staff only. This property, if set, will change

ch character are defined

d to determine the system wide maximum number of pages
cifically. If
is used. If

his value is defined and > 0, either this value or the maximum pages
alid.

at an arb queue entry is allowed to stay on

port to use to poll a DMS
to wait for a port for a
requested by the user). This affects background polling only, whic

t l# it has the lowest priority for acquiring a port, may need to wai
a DMS waits for user-directed commands to the DMS. Because backg

h, # is a low priority task, if this property is not set long enoug
fail when all the ports on a PortManager are being kept busy by

for other DMSes accessed from the same PortMan# (perhaps entirely
could cause DMSes t#
 d#
l

about 25 seconds per us#

greater than a Comm Loss timeout is of little val
 seconds. #

DMSControlModule.PollPortWaitTimeSecs=90

e Char# This property specifies the interval, in seconds, used by th
to determine how frequently to check for DMSs that are contro#

Operations Center which has no users logged
 Operations Center if it is online with a mes#

d
abandoned DMSes. In this case, the necessity
abandoned DMSes is low, the risk incurred by d#

low, and the cost to check is moderate. It does require some commun
 between Operations Centers to check. 300 seconds (5 minutes) is the#

DMSControlModule.SharedResMonIntSecs=300

This property specifies how often (in seco
 timestamp out to disk. This timestamp is #
i
be set small enough that the time down estimate
that the DMS Service is constantly writing times#

seconds is reasonable. The default i
 #
DMS

This property specifies#

property has no effect
 set to production. Thi#
s
the types of additional debug messages written to the DMSService log
file. These messages would have little meaning for operational #

staff. (For programmers: the meanings of ea
 in Chart2DMSImpl.log(). #

###DMSControlModule.LogFlags=

Property key use#

in a combined message, if one is not defined for a DMS spe
 this value is -1, the maximum number of pages for the dms #
t
for dms is used whichever is smaller. If this value is 0, it is inv

ue is 2. # The default val

DMSControlModule.MaximumPagesInCombinedMessage=2

Amount of time, specified in minutes, th

January 30, 2003 Page 70

CHART II Software Development Guide � Version 1.0

the arbitration queue even though its owner cannot be contacted to verify that it is
fect the message that ends up

the DMS, but will slow evaluation of the queue until they are removed. If this
perty

ue can be set to an

arge value to keep the entries from timing out. The max allowable value is (2^32)-

2147483647. Using a value this large would allow the entries to timeout after
sting

re-evaluated. The system will
evaluate

 interval expires. If that
aluation results
n the same message as the message currently on the device, the system will take no

f the evaluation results in a different message than the message currently on the

system will attempt to put the message resulting from the evaluation on the device.
s process

s property also has a

f 5 minutes (300). If a value less than 5 minutes is specified, it will be ignored

eck for 48V battery

col
s

eing included ahead of the change so that we don't have to do another
ted later when
tion).

racle db driver class

.orb.conc_model=threaded
pool

orbaloc::chart2-
5:8001/DefaultEventChannelFactory

e.TradingService=corbaloc::chart2-svr5:8002/TradingService

still a valid entry. Entries in this state will not af
on

pro
is not specified, it will default to 60 minutes. This val
arbitrarily
l
1 =

exi
on the queue for approximately 4085 years.

DMSControlModule.QueueEntryTimeoutMins=60

Frequency with which the Arbitration queue should be
re-
the arbitration queue for a device each time this
ev
i
fu
I
rther action.

d

evice, the

Thi
is only performed when the device is in online mode. This value will default to 5
minutes (300) if
not specified or if the value specified is invalid. Thi
minimum allowed value
o
and the minimum

. # 5 minute value will be used

DMSControlModule.EvaluateQueueSecs=300

This property specifies whether FP9500 type of DMSs should ch
failure
in the status data. *

Note (02/07/02): this property has been added for PR LevA115. The proto
 was going to be changed later by the vendor to support this but a fix i#
b
build just for this. This property needs to be dele

 intergra# it is no longer needed (revisit during R2B1

SControlModule.FP9500Allow48VBatteryFailureDetection=false DM

 #
O

jdbc.drivers=oracle.jdbc.driver.OracleDriver

Settings for the Orbacus ORB. Refer to the ORB documentation
for usage. #

ooc.orb.trace.connections=10 #
ooc
ooc.orb.oa.conc_model=thread_
c.orb.oa.thread_pool=10 oo

ooc.orb.oa.port=8004
oc.orb.service.EventChannelFactory=co
svr
ooc.orb.service.NotificationService=corbaloc::chart2-

aultEventChannelFactory svr5:8010/Def
ooc.orb.servic

January 30, 2003 Page 71

CHART II Software Development Guide � Version 1.0

EORSService.props

EORSService properties

This is the properties file used by the EORS Service Application.
All properties in this file are added to the system properties.
Vendor code like the ORB and Oracle access properties from the
system properties and thus including their properties in this
file allows all properties needed by the application to reside
in the same file.

Name of this service.

DefaultServiceApplication.ServiceName=EORSService

Refresh Trader Offers flag. Set this flag to true when you want
all previous trader offers made from within this app to be withdrawn
prior to starting service modules. Also allows service modules
to publish objects that are de-persisted from the database.

DefaultServiceApplication.RefreshOffers=true

DB Connection String for SQL Server Database

DefaultServiceApplication.DBConnectString=jdbc:inetdae:@EOCNTD0:1433

User name to be used to connect to the database

DefaultServiceApplication.DBUserName=CHART

Password to be used to connect to the database

DefaultServiceApplication.DBPassword=

Name of EORS database

EORSInitialCatalog=EORS

Maximum number of connections for DBConnectionManager to allocate.

DefaultServiceApplication.DBMaxConnections=3

Interval for DBConnectionManager to scan list of in-use connections
to detect threads that have exited without releasing connection.
(milliseconds)

DefaultServiceApplication.DBConnectionMonitorInterval=5000

Interval for OperationsLog to write queued items to the database.
(milliseconds)

DefaultServiceApplication.OperationLogInterval=5000

January 30, 2003 Page 72

CHART II Software Development Guide � Version 1.0

Network connection si

te of the service

DefaultServiceApplication.NetConnectionSite=chart2-svr5

tion.OfferFilename=EORSServiceOffers.txt

 the date to name the log file

aultServiceApplication.LogFileKeepDays=7

1)

ies=2

ction for requests to other services
pecified in milliseconds.

5000

lass names of ServiceApplicationModules to be instantiated

T2.EORSModule.EORSModule

t.

perties in this file to connect to the database and
.
ot use a database.

entation

Name of file where trader offers are stored so that they
can be cleaned up later using the RefreshOffers flag.

faultServiceApplicaDe

Name to be prepended to

DefaultServiceApplication.LogFileName=EORSService_

Logging level. Valid values are production or debug

DefaultServiceApplication.LogFileLevel=production

Number of days to keep old log files
 #
Def

 Number of tries to make when resolving references for initial services. (Default #

DefaultServiceApplication.ResolveInitialReferenceTr

 Amount of time to wait for establishing a conne#
s

faultServiceApplication.ORBConnectTimeoutMillis=De

 #
C
and run by this service.

DefaultServiceApplication.ModuleClassName0=CHAR

Determines if this service needs to use the CORBA
event service. This will default to true.

true - Uses the event service, false does not use i# Valid values :

DefaultServiceApplication.InitEventService=false

Determines if this service needs to use a DBMS.

lt to true. If set to true, the app will # This will defau
use the JDBC pro#

will not run if the database cannot be connected to
 Valid values : true - Uses a database, false does n#

DefaultServiceApplication.InitDB=true

 SQLServer db driver class #

jdbc.drivers=com.inet.tds.TdsDriver

Settings for the Orbacus ORB. Refer to the ORB docum

January 30, 2003 Page 73

CHART II Software Development Guide � Version 1.0

for usage.

.orb.oa.conc_model=thread_pool

c.orb.oa.port=8009
.orb.service.TradingService=corbaloc::chart2-svr5:8002/TradingService

ooc.orb.conc_model=threaded
ooc
ooc.orb.oa.thread_pool=10
oo
ooc

January 30, 2003 Page 74

CHART II Software Development Guide � Version 1.0

HARService.props

This is the properties file used by the HAR Service Application.
All properties in this file are added to the system properties.
Vendor code like the ORB and Oracle access properties from the
system properties and thus including their properties in this

ile allows all properties needed by the application to reside
e.

ou want
all previous trader offers made from within this app to be withdrawn
rior to starting service modules. Also allows service modules

Offers=true

aultServiceApplication.DBConnectString=jdbc:oracle:thin:@chart2-svr3:1526:SOC3

rt2har

 to allocate.

aultServiceApplication.DBMaxConnections=10

Log to write queued items to the database.

aultServiceApplication.OperationLogInterval=5000

hat they
flag.

f
in the same fil

Name of this service.

DefaultServiceApplication.ServiceName=HARService

Refresh Trader Offers flag. Set this flag to true when y

p
to publish objects that are de-persisted from the database.

DefaultServiceApplication.Refresh

DB Connection String for Oracle Database

Def

User name to be used to connect to the database

DefaultServiceApplication.DBUserName=HARService

Password to be used to connect to the database

DefaultServiceApplication.DBPassword=cha

Maximum number of connections for DBConnectionManager

Def

Interval for DBConnectionManager to scan list of in-use connections
to detect threads that have exited without releasing connection.
(milliseconds)

DefaultServiceApplication.DBConnectionMonitorInterval=5000

Interval for Operations
(milliseconds)
 #
Def

Network connection site of the service

DefaultServiceApplication.NetConnectionSite=chart2-svr5

Name of file where trader offers are stored so t
 can be cleaned up later using the RefreshOffers #

January 30, 2003 Page 75

CHART II Software Development Guide � Version 1.0

DefaultServiceApplication.OfferFilename=HAROffers.txt

alues are production or debug

n

it for establishing a connection for requests to other

faultServiceApplication.ORBConnectTimeoutMillis=5000

vent service
oes.) Refer to ServiceApplicationProperties.java.

pplicationModules to be instantiated and run by this

aultServiceApplication.ModuleClassName0=CHART2.HARControlModule.HARControlModule
ControlMod

erval, i.e. the amount of time this service should

the actual system properties (in minutes).

nd
prioritized) the queue

 determine if it should be allowed on the device. If
he object that placed
 the entry should be

llowed. If the owner can be reached it will return either VALID or INVALID. If
t cannot be reached, however, then the entry is considered marginal. Meaning, the

Name to be prepended to the date to name the log file

DefaultServiceApplication.LogFileName=HARService_

Logging level. Valid v

DefaultServiceApplication.LogFileLevel=productio

Number of days to keep old log files

DefaultServiceApplication.LogFileKeepDays=7

Number of tries to make when resolving references for initial services.
Default value is 1.

DefaultServiceApplication.ResolveInitialReferenceTries=2

Amount of time to wa
services, specified in milliseconds.
 #
De

Amount of time to wait for requests to other services to complete, specified
in milliseconds.

DefaultServiceApplication.ORBRequestTimeoutMillis=600000

This property specifies whether this service needs notification e#

access. (The HAR Service d
 Default value is false. #

DefaultServiceApplication.InitNotificationService=true

Class names of ServiceA#

this service.
 #
Def
DefaultServiceApplication.ModuleClassName1=CHART2.SHAZAMControlModule.SHAZAM
ule

System profile cache refresh int
refresh its system
properties cache with #

ARControlModule.SystemPropertiesRefreshMins = 60 H

This property controls the behavior of the arbitration queue and, therefore,
affects the message that is displayed on an online device.

ue to automatic backgrou# Each time the arbitration queue evaluates (either d
 to entries added, removed, re-# re-evaluation, or due

inspects each entry to#
all checks succeed, the queue checks with the entry owner (t
 the entry on the queue in the first place) and verifies that#
a
i

January 30, 2003 Page 76

CHART II Software Development Guide � Version 1.0

owner may no longer want this message on the device, but we cannot tell. This
property controls how the arbitration queue will deal with such entries. If this

t
orists until the arb queue

ich time the entry will be removed from the queue entirely.
f, on the other hand, this property is set to false the arbitration queue will not

ntry to be broadcast. The entry will remain
on the queue until it times out, but will not be allowed to be active unless a
uccessful verification call is made to the entry owner..

.EvaluateQueueSecs for frequency of queue background evaluations
eueEntryTimeoutMins for duration of queue entry timeout

e

d

onds to wait to obtain a port while doing
a background task, it is reasonable to

sk, since there will
 is expected that

t HARs will attempt to update their datestamps at about the same time,

ed

ns to make sure that the HAR message and HAR notifiers are set
eue item(s) (which runs in online mode
 rate, if for instance, there are no

orts available when a change in the queue necessitates a change to the HAR

for slot download. It would prevent the HAR service
f an Audio Clip Manager or Text To Speech process fails

his value should be set to at least
ip which might ever be stored on the

AR.

property is set to 'true', then marginal entries will be allowed to be broadcas
from the HAR. In this case the entry will be heard by mot
entry times out, at wh
I
allow the message for a marginal e

s

Valid values:
true - Marginal entries are broadcast from the HAR.
false - Marginal entries are not broadcast from the HAR.

Default value: true

see HARControlModule
see HARControlModule.Qu

HARControlModule.AllowMarginalQueueEntriesToBeActive=tru

This property specifies how frequently, in seconds, the HAR Service shoul
check text clips on the HARs to see if they have datestamps that need to
refreshed to the current day.

be

Default value is 300.

HARControlModule.DateStampRefreshIntervalSecs=300

This property specifies how many sec
datestamp refreshes. Since this is #

wait longer than would be appropriate for a foreground ta
t be a user waiting on this task to complete. Also, it# no

mos#
shortly after midnight each day. Waiting longer allows more calls to get

 # through at the first opportunity. This value should be substantially less
xpect# than the DateStampRefreshIntervalSecs, by at least double the runtime e

to be taken by the clip(s) which contain at datestamp (otherwise some HARs
may be unnecessarily updated twice).
Default value is 240.

HARControlModule.DatestampRefreshPortWaitTimeSecs=240

This property specifies the number of seconds that should elapse between

 the background task evaluate queue task. This is the task which # executions of
continually ru#

according to the current top priority qu
 only). This property controls the retry#
p
message, or if a SHAZAM or DMS being used as a notifier cannot be contacted
through software on the first attempt (if the DMS service is down, for
instance).
Default value is 300.

HARControlModule.EvaluateQueueSecs=300

y specifies the number of seconds that the HAR should wait for # This propert
collecting audio data
from waiting forever i#

to respond to a request for HAR audio. T
 double the maximum runtime of a single cl#
H

HARControlModule.HARAudioStreamerTimeoutSecs=180

January 30, 2003 Page 77

CHART II Software Development Guide � Version 1.0

Property that is used to specify the safety margin subtracted from total time

elieved to be remaining in RAM on the HAR, to be sure that a clip (or clips)
rtain to fit. Since the HAR cannot

communicate to the software, the software would not know if the HAR has
ejected a download due to space, so this safety margin ensures that the

ControlModule.HARRuntimeSafetyMarginSecs=10

his property specifies the name of the local audio clip manager, which is to

. If set, this property should be set to match the
Module.AudioClipManagerName property in the

orresponding MsgUtilityService props file (which is suggested to be set to
If the AudioClipManager

pecified by this property cannot be contacted, the HARService will attempt to
se any other AudioClipManager it can find.

RControlModule.LocalAudioClipManagerName=

nly. This property, if set, will change the types of
Service log file. This messages
aff. (For programmers: the

eanings of each character are defined in HARImpl.log().)

ximum runtime of a HAR message, in

efault value is 120.

 elapse between two
ers, in seconds. This means that
may not be discovered and used

iodSecs=60

his property specifies the minimum time that should elapse between two

iodSecs=60

b
about to be downloaded to the HAR are ce

r
software does not attempt to come too close to filling the HAR's RAM down to
the last second, risking an undetected overflow condition.
Default value is 10.

HAR

T
be the preferred AudioClipManager to be used by this HAR service. It is
expected, but not required, that the this AudioClipManager will be on the same
host as the HARService
value of the AudioClip
c
the name of the host on which it is running).
s
u
Default is to use the name of the host on which the HAR is running as the
name of the AudioClipManager (i.e., search for an AudioClipManager on the
local host first).

#HA

This property specifies the type of debug-level logging to do within the HAR
module. This property has no effect if DefaultServiceApplication.LogFileLevel

on. This property is intended for the use of software # is set to producti
engineering staff o#

additional debug messages written to the HAR
 would have little meaning for operational st#
m
Default value is set to a reasonable level of debugging output.

e.LogFlags= #HARControlModul

Property key that is used to specify the ma
 seconds. #
D

HARControlModule.MaximumMessageRuntimeSecs=120

This property specifies the minimum time that should#

trader queries to rediscover Audio Clip Manag
 if a new Audio Clip Manager comes online, it #

for up to this period of time.
Default value is 60.

RControlModule.MinimumAudioClipManagerRediscoveryPerHA

 #
T
trader queries to rediscover Text-To-Speech Converters, in seconds. This
means that if a new Text-To-Speech Converter comes online, it may not be

r up to this period of time. # discovered and used fo
Default value is 60.

HARControlModule.MinimumTTSConverterRediscoveryPer

January 30, 2003 Page 78

CHART II Software Development Guide � Version 1.0

This property specifies the total number of threads in the thread pool of the

ice.
efault value is 10.

RControlModule.NumPushThreads=10

eset

rty

to restore the HAR to its original condition, two redials
ay be attempted.)

ControlModule.PostResetInitialRedialDelayMillis=200

t
d before redialing the HAR again to attempt to set up

the reset. This property
here is another property which

controls a (likely somewhat shorter) delay prior to the intial redial.

perty is set to -1, the secondary redial is not

ControlModule.PostResetSecondaryRedialDelayMillis=3000

his HAR service. It is expected, but not
 TTS Converter will be on the same host as the

e set to match the value of the
 property in the corresponding

MsgUtilityService props file (which is suggested to be set to the name of the
ost on which it is running). If the TTS Converter specified by this property

 HARService will attempt to use any other TTS

ich the HAR is running as the
n TTS Converter on the local host

ost first).

amount of time, in minutes, that an arb queue
rbitration queue even though its owner cannot
 still a valid entry. Entries in this state

ge that ends up on the device, but will slow
s property can be set to
timing out. The max
alue this large would
ueue for approximately

HARControlModule.QueueEntryTimeoutMins=60

AudioPushThreadManager. It should be set to a value at or slightly higher
than the maximum number of monitor slot/monitor broadcast operations expected
to be underway simulataneously for this one HAR serv
D

HA

This property specifies the number of milliseconds to wait after a r
command has been issued before redialing the HAR again to attempt to set up
the HAR back to its original condition before the reset. This property
identifies the delay prior to the INITIAL redial. There is another prope
which controls a (likely somewhat longer) delay prior to a "second chance"
redial. (Since it is relatively important that we make all attempt to
complete the action
m
Default value is 200.

HAR

This property specify
command has been issue

 the number of milliseconds to wait after a rese

the HAR back to its original condition before
 identifies the delay prior a SECOND redial. T#

(Since it is relatively important that we make all attempt to complete the
action to restore the HAR to its original condition, we allow for two
redials.) If this pro
attempted. #

Default value is 3000 (3 seconds).
 #
HAR

e of the Text To Speech (TTS) Converter which # This property specifies the nam
 for use t# is to be the preferred

required, that the this#
HARService. If set, this property should b
 DefaultServiceApplication.NetConnectionSite#

h
cannot be contacted, the
Converter it can find. #

Default is to use the name of the host on wh
 name of the TTSConverter (i.e., search for a#
h

dule.PreferredTTSConverter= #HARControlMo

e # This property specifies th
entry is allowed to stay on the a

hat it is# be contacted to verify t
 messa# will not affect the

evaluation of the queue until they are removed. Thi
an arbitrarily large value to keep the entries from
allowable value is (2^32)-1 = 2147483647. Using a v
allow the entries to timeout after existing on the q
4085 years.
Default value is 60.

January 30, 2003 Page 79

CHART II Software Development Guide � Version 1.0

This property specifies the
determine how frequently to

 interval, in seconds, used by HAR Service to
 check for HARs in maintenance mode but whose

controlling op center has no users logged in.

ll wait for
ZAM (or a DMS

.
efault value is 60.

tivateTimeoutSecs=60

ce will wait for
 response after sending a deactivate HAR Notice request to a SHAZAM (or a DMS

s the HAR service will wait for
a response after sending a request to a SHAZAM to put it in maintenance mode
s the HAR is going into maintenance mode.

 HAR service will wait for
 take it offline as the HAR

ControlModule.ShazamOfflineTimeoutSecs=60

R service will wait for
t it online as the HAR is

oing online.

d will wait
suing commands

 500 in milliseconds (0.5 seconds)

will wait
essive commands while issuing commands to the HAR device.

ControlModule.DTMFInterCommandDelayMillis=500

telephony board will wait
 tone while issuing commands

o the SHAZAM device.

Default value is 300.

HARControlModule.SharedResMonIntSecs=300

This property specifies the number of seconds the HAR service wi

ending an activate HAR Notice request to a SHA# a response after s
acting as a SHAZAM)#
 D#

HARControlModule.ShazamAc

 This property specifies the number of seconds the HAR servi#
a
acting as a SHAZAM).
Default value is 60.

HARControlModule.ShazamDeactivateTimeoutSecs=60

 This property specifies the number of second#

a
Default value is 60.

HARControlModule.ShazamMaintTimeoutSecs=60

This property specifies the number of seconds the
a response after sending a request to a SHAZAM to#

is going offline.
 #
HAR

This property specifies the number of seconds the HA
 a response after sending a request to a SHAZAM to pu#
g
Default value is 60.

HARControlModule.ShazamOnlineTimeoutSecs=60

This property specifies the number of milliseconds the telephony boar

 is# after generating a DTMF tone before generating the next tone while
ce. # to the HAR devi

Default value is#

ARControlModule.DTMFInterToneDelayMillis=500 H

pecifies the number of milliseconds the HAR service # This property s
between two succ#

Default value is 500 in milliseconds (0.5 seconds)
 #
HAR

This property specifies the number of milliseconds the
 after generating a DTMF tone before generating the next#
t
Default value is 500 in milliseconds (0.5 seconds)

January 30, 2003 Page 80

CHART II Software Development Guide � Version 1.0

SHAZAMControlModule.DTMFInterToneDelayMillis=500

his property specifies the number of milliseconds the SHAZAM service will wait
to the SHAZAM device.

efault value is 500 in milliseconds (0.5 seconds)

AZAMControlModule.DTMFInterCommandDelayMillis=500

his property specifies the type of debug-level logging to do within the
has no effect if

DefaultServiceApplication.LogFileLevel is set to production. This property is
ntended for the use of software engineering staff only. This property, if

al debug messages written to the
ARService log file. This messages would have little meaning for operational

ach character are defined in
SHAZAMImpl.log().)

Specifies how long to wait to obtain a port while doing background refreshes.

AZAMControlModule.RefreshPortWaitTimeSecs=25

ns of the

d by SHAZAM Service to determine how
olling op

ZAMControlModule.SharedResMonIntSecs=300

c.drivers=oracle.jdbc.driver.OracleDriver

ORB documentation

_pool

T
between two successive commands while issuing commands
D

SH

T
SHAZAM module of the HAR service. This property

i
set, will change the types of addition
H
staff. (For programmers: the meanings of e

###SHAZAMControlModule.LogFlags=

#

This does not affect forced refresh on demand requested by a user on a SHAZAM
in maintenance mode, only regularly scheduled background refreshes.

SH

Default value is 25.

Specifies the number of seconds that should elapse between executio
RefreshSHAZAMTask.
Default value is 20. #

HAZAMControlModule.RefreshTimerDelaySecs=20 S

This property specifies the interval use#

frequently to check for SHAZAMs in maintenance mode but whose contr
center has no users logged in. #

Default value is 300.
 #
SHA

 Oracle db driver class #

jdb

Settings for the Orbacus ORB. Refer to the
 for usage. #

ooc.orb.trace.connections=10

 ooc.orb.conc_model=threaded
c.orb.oa.conc_model=threadoo

ooc.orb.oa.thread_pool=20
ooc.orb.oa.port=8011
ooc.orb.service.EventChannelFactory=corbaloc::chart2-
svr5:8001/DefaultEventChannelFactory
ooc.orb.service.NotificationService=corbaloc::chart2-
svr5:8010/DefaultEventChannelFactory
oc.orb.service.TradingService=corbaloc::chart2-svr5:8002/TradingService o

January 30, 2003 Page 81

CHART II Software Development Guide � Version 1.0

MsgUtilityService.props

This is the properties file used by the
Message Utility Service Application.
All properties in this file are added to the system properties.

le access properties from the
system properties and thus including their properties in this
ile allows all properties needed by the application to reside

Name of this service.

rvice

flag to true when you want
all previous trader offers made from within this app to be withdrawn
rior to starting service modules. Also allows service modules

B Connection String for Oracle Database

faultServiceApplication.DBConnectString=jdbc:oracle:thin:@chart2-svr3:1526:SOC3

User name to be used to connect to the database

aultServiceApplication.DBUserName=MessageUtilityService

assword to be used to connect to the database

t2mu

Maximum number of connections for DBConnectionManager to allocate.

to scan list of in-use connections
o detect threads that have exited without releasing connection.

Interval=5000

nterval for OperationsLog to write queued items to the database.

ionLogInterval=5000

etwork connection site of the service

that they

Vendor code like the ORB and Orac

f
in the same file.

DefaultServiceApplication.ServiceName=MessageUtilitySe

Refresh Trader Offers flag. Set this

p
to publish objects that are de-persisted from the database.

DefaultServiceApplication.RefreshOffers=true

D

De

Def

P

DefaultServiceApplication.DBPassword=char

DefaultServiceApplication.DBMaxConnec

tions=10

Interval for DBConnectionManager
t
(milliseconds)

DefaultServiceApplication.DBConnectionMonitor

I
(milliseconds)

faultServiceApplication.OperatDe

 #
N

ite=chart2-svr5 DefaultServiceApplication.NetConnectionS

Name of file where trader offers are stored so

January 30, 2003 Page 82

CHART II Software Development Guide � Version 1.0

can be cleaned up later using the RefreshOffers flag.

log file

ultServiceApplication.LogFileName=MsgUtilService_

aultServiceApplication.LogFileLevel=production

umber of days to keep old log files

umber of tries to make when resolving references for initial services. (Default 1)

rvices

t for requests to other services to complete

operty key used to specify if the service needs trading service access

.InitTradingService=

access

eApplication.InitEventService=

Modules to be instantiated

ionaryModule.DictionaryModule
ageLibraryModule.MessageLibraryM

ule

DefaultServiceApplication.OfferFilename=MsgUtilityOffers.txt

Name to be prepended to the date to name the

Defa

Logging level. Valid values are production or debug

Def

N

DefaultServiceApplication.LogFileKeepDays=7

N

DefaultServiceApplication.ResolveInitialReferenceTries=2

Amount of time to wait for establishing a connection for requests to othe

ds.
r se

specified in millisecon

DefaultServiceApplication.ORBConnectTimeoutMillis=5000

Amount of time to wai#

specified in milliseconds.

efaultServiceApplication.ORBRequestTimeoutMillis=30000D

Status not known on these 3 properties

Property key used to specify if the service needs database access

#DefaultServiceApplication.InitDB=

 #
#Pr

efaultServiceApplication#D

#Property key used to specify if the service needs event service

efaultServic#D

Class names of ServiceApplication

 # and run by this service.

DefaultServiceApplication.ModuleClassName0=CHART2.Dict
DefaultServiceApplication.ModuleClassName1=CHART2.Mess
odule
efaultServiceApplication.ModuleClassName2=CHART2.PlanModule.PlanModule D
DefaultServiceApplication.ModuleClassName3=CHART2.AudioClipModule.AudioClipModule
efaultServiceApplication.ModuleClassName4=CHART2.TTSControlModule.TTSControlMod#D

January 30, 2003 Page 83

CHART II Software Development Guide � Version 1.0

Property key used to specifiy the location of the AudioClipManager.

s the
umber of threads in the thread pool for the audio clip module.

0

owner) are deleted.

s
for the clip cleanup delay.

AudioClipModule.ClipCleanupDelaySecs=0

Property key that specifies what types of debug-level logging to do.

AudioClipModule.LogFlags=AacDEeFHiIkOoqRSsTUvxZz?~

Property key that specifies what the name of the audio clip manager.

#AudioClipModule.AudioClipManagerName=

Property key that specifies how many days to wait before

deleting stale audio clips from the database.

AudioClipModule.DaysToDeleteStaleClips=30

Property key that specifies the file directory location
where the audio files will be stored.

TTSControlModule.AudioFileDirLocation=.\\audio

Property key that specifies the maximum file cache size
for the audio files in mega bytes.

TTSControlModule.MaxCacheSize=100

Property key that specifies the audio push thread pool size.

TTSControlModule.AudioPushThreadPoolSize=25

Property key that specifies the hostname or the IP address of the machine on
which TTSService is running.

TTSControlModule.TTSServerHostname =chart2-ws3

Property key that specifies the port number on which the TTS socket server
is listening for connection requests.

#MessageLibraryModule.PreferredAudioClipManager=

Name for the property that specifie
n

AudioClipModule.NumPushThreads=1

Property key that specifies at what time lost
clips (i.e. clips without an

AudioClipModule.ClipCleanupTimeOfDay=00:00:00

Property key that specifies the number of second

January 30, 2003 Page 84

CHART II Software Development Guide � Version 1.0

TTSControlModule.T

TSServerSocketPortNumber=8012

r TTS server

5000

e flag to indicate whether to use TTS server
o use TTS server COM interface for conversion of text
lag to "true" to use TTS socket interface or "false"

erface=true

s of the audio format configurations
e engines are configured to convert

specify the audio format of the

t property for every configuration

 should be updated to match the TTSEngine
onfiguration everytime the TTSEngine configuration is changed to add or

e

SControlModule.TTSServerSupportedAudioConfigName0=ULAWConfig

 specifies the audio formats being used by the configurations
efined by the TTSControlModule.TTSServerSupportedAudioConfigName properties.

 of the form "Wave: Linear 8bit 8kHz"

#TTSControlModule.TTSServerSupportedAudioFormat0=Wave: uLaw 8bit 8kHz
#TTSControlModule.TTSServerSupportedAudioFormat1=

Oracle db driver class

jdbc.drivers=oracle.jdbc.driver.OracleDriver

Settings for the Orbacus ORB. Refer to the ORB documentation
for usage.

#ooc.orb.trace_level=10
ooc.orb.conc_model=threaded
ooc.orb.oa.conc_model=thread_pool
ooc.orb.oa.thread_pool=10
ooc.orb.oa.port=8005
ooc.orb.service.EventChannelFactory=corbaloc::chart2-
svr5:8001/DefaultEventChannelFactory
ooc.orb.service.TradingService=corbaloc::chart2-svr5:8002/TradingService

#----- Properties of 'MessageLibraryModule' -----------------------------------

Property key that specifies the timeout value to be used fo
socket request.

TTSControlModule.TTSServerSocketTimeout=1

pecifies th# Property key that s
socket interface or t
 to speech. Set this f#
to use the TTS server COM interface.

TSControlModule.UseTTSServerSocketIntT

Property key that specifies the name
 that the currently running TTSServic#
text to speech. These are used to
converted audio data.

Note: Define a supported audio forma#

name defined here. Same index should be used for both the
TTSServerSupportedAudioConfigName property and the TTSServerSupportedAudioFormat
property.
Ex: Suppose if TTSControlModule.TTSServerSupportedAudioConfigName0=Config0,#

TTSControlModule.TTSServerSupportedAudioFormat0 should define the audio
format used by Config0

NOTE*: These properties#
 c#
delete a audio format and the service that is serving the TTSControlModul
shall be restarted.
 #
#TT
#TTSControlModule.TTSServerSupportedAudioConfigName1=

Property key that#
 d#

The format string should be

January 30, 2003 Page 85

CHART II Software Development Guide � Version 1.0

(boolean) Property key to turn on special tests and logging in

rings

#CCI MessageLibraryModule.initialize() runs a test of
 getAllClipIdentifiers and confirmClipInterest().

terest displays its results each time called by
ger.

MessageLibraryModule.MessageLibraryModule.java.

Log Messages controlled by the prop are prefixed with special st
indicating the area of the test:

prefix test
 ------ ---------#
 #

confirmClipIn
 AudioClipMana#

 #MLT Traces actions on stored messages. #

MessageLibraryModule.DoMessageLibraryTests=false

January 30, 2003 Page 86

CHART II Software Development Guide � Version 1.0

Notserv.props
Directory for DB files
#ooc.notification.dbdir=<INSTALL_PATH>\bin\NotifyService\db

vice/db

enerate references using IP address.

 IIOP flavor is for ORB 4.X

c.iiop.numeric=true

d_pool
.notification.dispatch_threads=50

hese are not verified to work... I am just playing with them.
.notification.MaxRetries=5

c.service.NotificationService=corbaloc:iiop:chart2-
5:8010/DefaultEventChannelFactory

 a list of all the trading services that are needed to

 written ahould be

c.orb.service.TradingService(x)=corbaloc::<TRADER_HOST>:<TRADER_PORT>/TradingServic

c.orb.service.TradingService1=corbaloc::CHART2-SVR5:8002/TradingService
.orb.service.TradingService2=corbaloc::CHART2-SVR3:9002/TradingService

ach of the Trading services listed above can be given a "real" name which will

dingService1=CHART2-SVR5

ooc.notification.dbdir=d:/test/chartii-r1b3.10/bin/NotifySer

G
- BOA flavor is for ORB 3.X (R1B3)
-
ooc.boa.numeric=true
oo

ooc.notification.dispatch_strategy=threa
ooc

#T
ooc
ooc.notification.RetryMultiplier=1.0

#location of event channel factory
oo
svr

The following should contain
be
linked to each other. The format in which it should be

"oo
e"
where x should be 1,2,3....

oo
ooc

E
be used as the link name for that trading service when linked to another
trading service

Tra
TradingService2=CHART2-SVR3

January 30, 2003 Page 87

CHART II Software Development Guide � Version 1.0

TrafficEventService.props

This is the properties file used by the TrafficEvent Service Application.
All properties in this file are added to the system properties.
endor code like the ORB and Oracle access properties from the

application to reside
n the same file.

aultServiceApplication.ServiceName=TrafficEventService

efresh Trader Offers flag. Set this flag to true when you want
be withdrawn

o publish objects that are de-persisted from the database.

faultServiceApplication.RefreshOffers=true

B Connection String for Oracle Database

faultServiceApplication.DBConnectString=jdbc:oracle:thin:@chart2-svr3:1526:SOC3

ser name to be used to connect to the database

faultServiceApplication.DBUserName=TrafficEventService

be used to connect to the database

sword=chart2te

ions for DBConnectionManager to allocate.

Interval for DBConnectionManager to scan list of in-use connections
to detect threads that have exited without releasing connection.
(milliseconds)

DefaultServiceApplication.DBConnectionMonitorInterval=5000

Interval for OperationsLog to write queued items to the database.
(milliseconds)

DefaultServiceApplication.OperationLogInterval=5000

Network connection site of the service

DefaultServiceApplication.NetConnectionSite=chart2-svr5

Name of file where trader offers are stored so that they
can be cleaned up later using the RefreshOffers flag.

V
system properties and thus including their properties in this
file allows all properties needed by the
i

Name of this service.

Def

R
all previous trader offers made from within this app to
prior to starting service modules. Also allows service modules
t

De

D

De

U

De

Password to

DefaultServiceApplication.DBPas

Maximum number of connect

DefaultServiceApplication.DBMaxConnections=10

January 30, 2003 Page 88

CHART II Software Development Guide � Version 1.0

DefaultServiceApplication.OfferFilename=TrafficEventOffers.txt

eep old log files

aultServiceApplication.LogFileKeepDays=7

s for initial services. (Default 1)

aultServiceApplication.ResolveInitialReferenceTries=2

ther services

lis=5000

mount of time to wait for requests to other services to complete

stantiated

.CommLogModule.CommLogModule
aultServiceApplication.ModuleClassName1=CHART2.TrafficEventModule.TrafficEventModul

inutes,
efore declaring an iterator to be disused, i.e., no longer active or needed.

his property specifies how often to check, in minutes, to see if the

uently to poll
or devices that are being controlled but whose controlling op center has

.SharedResMonIntSecs= 300

nterval used by TrafficEventFactory to determine how long a closed traffic event
ne in hours.

Name to be prepended to the date to name the log file

aultServiceApplication.LogFileName=TrafficEventService_ Def

Logging level. Valid values are production or debug

DefaultServiceApplication.LogFileLevel=production

Number of days to k#
 #
Def

Number of tries to make when resolving reference
 #
Def

 to o# Amount of time to wait for establishing a connection for requests
specified in milliseconds.

DefaultServiceApplication.ORBConnectTimeoutMil

A
specified in milliseconds.

DefaultServiceApplication.ORBRequestTimeoutMillis=30000

Class names of ServiceApplicationModules to be in
and run by this service. #

efaultServiceApplication.ModuleClassName0=CHART2D
Def
e

 This property specifies how long to wait, in m#
b

mmLogModule.LogIteratorDisuseTimeoutMin=15 Co

 #
T
iterator should be considered as disused.

IteratorDisuseCheckIntervalMin=30 CommLogModule.Log

 Interval used by TrafficEventFactory to determine how freq#
f
no users logged in in seconds.

afficEventModuleTr

 #
I
is to kept active before taking it offli

TrafficEventModule.OfflineThresholdHours = 12

January 30, 2003 Page 89

CHART II Software Development Guide � Version 1.0

Interval used by TrafficEventFactory to determine how frequently to poll

is executed
ts in seconds.

requently to poll
he trader for EORS permits in minutes.

afficEventModule.EORSPermitLookupInterval = 60

roperty key that specifies the interval at which response

fficEventModule.TrafficEventRPIStatusMonitorInterval=60

n minutes,
efore declaring an iterator to be disused, i.e., no longer active or needed.

, to see if the
iterator should be considered as disused.

racle db driver class

 usage.

c.orb.trace.connections=10

.orb.service.EventChannelFactory=corbaloc::chart2-

svr5:8002/TradingService

for responses from response plan items if a traffic event
and to send history change updates for the traffic even

TrafficEventModule.TrafficEventResponseMonitorInterval = 1

Interval used by TrafficEventFactory to determine how f
t

Tr

P
plan item status are updated in seconds.

Tra

This property specifies how long to wait, i
b

TrafficEventModule.LogIterato

rDisuseTimeoutMin=15

 This property specifies how often to check, in minutes#

TrafficEventModule.LogIteratorDisuseCheckIntervalMin=15

 #
O

iver.OracleDriver jdbc.drivers=oracle.jdbc.dr

Settings for the Orbacus ORB. Refer to the ORB documentation
for#
 #
#oo
ooc.orb.conc_model=threaded
c.orb.oa.conc_model=thread_pool oo

ooc.orb.oa.thread_pool=10
oc.iiop.port=8006 o
ooc
svr5:8001/DefaultEventChannelFactory
c.orb.service.TradingService=corbaloc::chart2-oo

January 30, 2003 Page 90

CHART II Software Development Guide � Version 1.0

TSSService.props

TSSService properties pre-configured to use the DEV database

vent service on chart2-svr3.
r ClearCase view.

This is the properties file used by the TSS Service Application.
All properties in this file are added to the system properties.
Vendor code like the ORB and Oracle access properties from the
system properties and thus including their properties in this
file allows all properties needed by the application to reside
in the same file.

Name of this service.

DefaultServiceApplication.ServiceName=TSSService

Refresh Trader Offers flag. Set this flag to true when you want
all previous trader offers made from within this app to be withdrawn
prior to starting service modules. Also allows service modules
to publish objects that are de-persisted from the database.

DefaultServiceApplication.RefreshOffers=true

DB Connection String for Oracle Database

DefaultServiceApplication.DBConnectString=jdbc:oracle:thin:@chart2-svr3:1526:SOC3

User name to be used to connect to the database

DefaultServiceApplication.DBUserName=TSSService

Password to be used to connect to the database

DefaultServiceApplication.DBPassword=chart2tss

Maximum number of connections for DBConnectionManager to allocate.

DefaultServiceApplication.DBMaxConnections=10

Interval for DBConnectionManager to scan list of in-use connections
to detect threads that have exited without releasing connection.
(milliseconds)

DefaultServiceApplication.DBConnectionMonitorInterval=5000

Interval for OperationsLog to write queued items to the database.
(milliseconds)

DefaultServiceApplication.OperationLogInterval=5000

Network connection site of the service

and the trader and e
These properties are for use during testing from you

January 30, 2003 Page 91

CHART II Software Development Guide � Version 1.0

DefaultServiceApplica

tion.NetConnectionSite=chart2-svr5

d to the date to name the log file

aultServiceApplication.LogFileName=TSSServiceDev_

aultServiceApplication.LogFileLevel=production

Amount of time to wait for establishing a connection for requests to other services
pecified in milliseconds.

illis=5000

umber of tries to make when resolving references for initial services. (Default 1)

ies=2

lass names of ServiceApplicationModules to be instantiated

T2.TSSManagementModule.TSSManagementMod

 TSS data.

ManagementModule.RawDataFilename=.\\RawData\\RawData_

 be

c.drivers=oracle.jdbc.driver.OracleDriver

tation

Name of file where trader offers are stored so that they
can be cleaned up later using the RefreshOffers flag.

DefaultServiceApplication.OfferFilename=TSSOffersDev.txt

Name to be prepende#
 #
Def

Logging level. Valid values are production or debug
 #
Def

Number of days to keep old log files

faultServiceApplication.LogFileKeepDays=7 De

 #

s

faultServiceApplication.ORBConnectTimeoutMDe

 #
N

faultServiceApplication.ResolveInitialReferenceTrDe

 #
C
and run by this service.

DefaultServiceApplication.ModuleClassName0=CHAR
le u

Full path + name of the raw data log file for
 #
TSS

 debug logs are to be placed. # Directory where

TSSManagementModule.DebugFileDir=.\\DebugLogs

Interval at which TSS data for all TSS objects in this module is to

ushed on a CORBA event channel. # collected and p

TSSManagementModule.StatusPushIntervalSecs=60

Oracle db driver class
 #
jdb

Settings for the Orbacus ORB. Refer to the ORB documen#

January 30, 2003 Page 92

CHART II Software Development Guide � Version 1.0

January 30, 2003 Page 93

for usage.

ooc.orb.trace.connections=10

.orb.oa.conc_model=thread_pool

c.orb.oa.port=8008
.orb.service.EventChannelFactory=corbaloc::chart2-

.orb.service.TradingService=corbaloc::chart2-svr5:8002/TradingService

ooc.orb.conc_model=threaded
ooc
ooc.orb.oa.thread_pool=10
oo
ooc
svr5:8001/DefaultEventChannelFactory
ooc

CHART II Software Development Guide � Version 1.0

January 30, 2003 Page 94

UMService.props

This is the properties file used by the User Management Service Application.

tem properties.
Vendor code like the ORB and Oracle access properties from the
ystem properties and thus including their properties in this

es needed by the application to reside
n the same file.

aultServiceApplication.ServiceName=UserManagementService

this flag to true when you want
s made from within this app to be withdrawn

rvice modules. Also allows service modules
tabase.

DB Connection String for Oracle Database

DefaultServiceApplication.DBConnectString=jdbc:oracle:thin:@chart2-svr3:1526:SOC3

User name to be used to connect to the database

DefaultServiceApplication.DBUserName=UserManagementService

Password to be used to connect to the database

DefaultServiceApplication.DBPassword=chart2um

Maximum number of connections for DBConnectionManager to allocate.

DefaultServiceApplication.DBMaxConnections=10

Interval for DBConnectionManager to scan list of in-use connections
to detect threads that have exited without releasing connection.
(milliseconds)

DefaultServiceApplication.DBConnectionMonitorInterval=5000

Interval for OperationsLog to write queued items to the database.
(milliseconds)

DefaultServiceApplication.OperationLogInterval=5000

Network connection site of the service

DefaultServiceApplication.NetConnectionSite=chart2-svr5

Name of file where trader offers are stored so that they
can be cleaned up later using the RefreshOffers flag.

All properties in this file are added to the sys

s
file allows all properti
i

Name of this service.

Def

Refresh Trader Offers flag. Set
all previous trader offer
prior to starting se
to publish objects that are de-persisted from the da

DefaultServiceApplication.RefreshOffers=true

CHART II Software Development Guide � Version 1.0

January 30, 2003 Page 95

DefaultServiceApplication.OfferFilename=UMServiceOffers.txt

Name to be prepended to the date to name the log file

DefaultServiceApplication.LogFileName=UMService_

Logging level. Valid values are production or debug

DefaultServiceApplication.LogFileLevel=production

Number of days to keep old log files

DefaultServiceApplication.LogFileKeepDays=7

Number of tries to make when resolving references for initial services. (Default 1)

DefaultServiceApplication.ResolveInitialReferenceTries=2

Amount of time to wait for establishing a connection for requests to other services
specified in milliseconds.

DefaultServiceApplication.ORBConnectTimeoutMillis=5000

Amount of time to wait for requests to other services to complete
specified in milliseconds.

DefaultServiceApplication.ORBRequestTimeoutMillis=30000

Class names of ServiceApplicationModules to be instantiated
and run by this service.

DefaultServiceApplication.ModuleClassName0=CHART2.UserManagementModule.UserManagementM
odule
DefaultServiceApplication.ModuleClassName1=CHART2.ResourcesModule.ResourcesModule

Interval (in minutes)used by the resources module to determine how frequently
to have each operations center object cleanup invalid login sessions.
The operations center will have to ping each login session in order
to perform this task. This value will default to five minutes if unspecified
or if the specified value is not an integer.

ResourcesModule.LoginSessionCleanupInterval=5

Interval (in minutes) that should pass after the last
successful ping before a logged in user session will be considered invalid.

The value of this property should be at least three times greater
than the cleanup interval; otherwise it will be ignored and a user
session will be disconnected if it cannot be successfully pinged for
a period of time equal to three cleanup intervals.

If this value is not specified, it will default to 30 minutes.

ResourcesModule.LoginSessionDisconnectTime=30

Timeout (in seconds) for the resource check when the last user

CHART II Software Development Guide � Version 1.0

January 30, 2003 Page 96

logs out of an operations center. If the system cannot
determine whether there are shared resources controlled by
the operations center within this time period, the user
will be allowed to log out. The resource watchdogs in the
SharedResourceManager implementations will then be responsible
for alerting the appropriate people that there are unhandled resources.
ResourcesModule.LogoutResourceCheckTimeoutSec=60

Oracle db driver class

jdbc.drivers=oracle.jdbc.driver.OracleDriver

Settings for the Orbacus ORB. Refer to the ORB documentation
for usage.

#ooc.orb.trace.connections=10
ooc.orb.conc_model=threaded
ooc.orb.oa.conc_model=thread_pool
ooc.orb.oa.thread_pool=10
ooc.orb.oa.port=8003
ooc.orb.service.EventChannelFactory=corbaloc::chart2-
svr5:8001/DefaultEventChannelFactory
ooc.orb.service.TradingService=corbaloc::chart2-svr5:8002/TradingService

